
www.manaraa.com

1 

1. INTRODUCTION 

1.1 Background 

The field of software reuse has evolved from reuse of individual components towards 

large-scale reuse with software product lines [Clements02]. A software product line 

(SPL) consists of a family of software systems that have some common functionality and 

some variable functionality. Parnas referred to a collection of systems that share common 

characteristics as a family of systems [parnas79]. According to Parnas, it is worth 

considering the development of a family of systems when there is more to be gained by 

analyzing the systems collectively rather than separately, i.e. the systems have more 

features in common than features that distinguish them. A family of systems is now 

referred to as a software product line or software product family. 

A Software Product Line (SPL) is developed by engineering a reusable architecture for 

the product line, which can be configured to generate target applications [Gomaa99, 

Gomaa04]. The two major activities used in developing product lines are SPL 

engineering and application engineering. SPL engineering involves the analysis, design, 

and implementation of product line software that satisfy the requirements of the families 

of systems [Weiss99, Gomaa04]. Application engineering involves tailoring the 

Software Product Line Engineering Based on Web Servicesالعنوان:

Saleh, Mazen M. Aquilالمؤلف الرئيسي:

Gomaa, Hassan(Super.)مؤلفين آخرين:

2005التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

:MD 618453رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

البرمجيات، الإنترنت، تقنية المعلومات، هندسة الحاسباتمواضيع:

https://search.mandumah.com/Record/618453رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618453


www.manaraa.com

1 

1. INTRODUCTION 

1.1 Background 

The field of software reuse has evolved from reuse of individual components towards 

large-scale reuse with software product lines [Clements02]. A software product line 

(SPL) consists of a family of software systems that have some common functionality and 

some variable functionality. Parnas referred to a collection of systems that share common 

characteristics as a family of systems [parnas79]. According to Parnas, it is worth 

considering the development of a family of systems when there is more to be gained by 

analyzing the systems collectively rather than separately, i.e. the systems have more 

features in common than features that distinguish them. A family of systems is now 

referred to as a software product line or software product family. 

A Software Product Line (SPL) is developed by engineering a reusable architecture for 

the product line, which can be configured to generate target applications [Gomaa99, 

Gomaa04]. The two major activities used in developing product lines are SPL 

engineering and application engineering. SPL engineering involves the analysis, design, 

and implementation of product line software that satisfy the requirements of the families 

of systems [Weiss99, Gomaa04]. Application engineering involves tailoring the 



www.manaraa.com

2 

/~ngineered SPL to produce target applications based on a given set of configuration 

requirements [Sugumaran92, Gomaa04]. 

This dissertation addresses product lines based on web services. A web service is defined 

as a collection of functional methods that are grouped into a single package and published 

in the Internet for use by other applications. Web services use the standard Extensible 

Markup Language (XML) to exchange information with other software via the Internet 

protocols [Deitel et al. 2003, Howard04, Booth04]. 

Although there is much research into software product line engineering, this research 

extends product line concepts to address the engineering and customization of product 

lines that are based on web services. 

1.2 Research Problem and Approach 

This research focuses on designing, developing and customizing software product lines 

based on web services to derive executable target applications from the product line using 

an automated customization environment. The approach taken is to: 

a) Develop a design approach for software product line service-oriented architecture. 

b) Introduce three different development approaches to support the automatic 

customization of SPL architecture and components: 

c) Develop a proof-of-concept prototype to support this research 



www.manaraa.com

3 

d) Validate this research with two web services-based software product line case 

studies. 

1.3 Importance and Rationale of This Research 

The idea of web services has been strongly promoted in industry by companies such as 

Microsoft, ffiM, Oracle, and Hewlett-Packard. They see this new technology as a broad 

new vision for how software systems are analyzed, developed, and used [McDougall 01]. 

Web services employ open standards that are text-based, which introduce a new approach 

to communication between heterogeneous platforms and applications [Deitel 03]. Using 

the already existing internet technology, web services make communication, 

interoperability, and integration cheaper and easier to achieve, compared to current 

methods, such as CORBA and DCOM [Deitel 03]. As the use of web services continues 

to grow, software product lines engineers should take full advantage of this technology. 

Therefore, it is essential to develop a new methodology that enables the design, 

development, and customization of software product lines that consist of web services

based components. 

1.4 Terminology 

This section provides definitions of important terms used in this dissertation. 

Unified Modeling Language 

Unified Modeling Language (UML) is a standardized object-oriented development 

environment that is used to analyze and design systems. 



www.manaraa.com

4 

Software Product Line 

A software product line (SPL) is a family of systems that share common features. It is 

developed by engineering an application domain that can be configured to generate target 

systems through the customization process of selecting optional and alternative features. 

[Parnas79, Gomaa04] 

Feature 

A feature is a functional requirement of a software application. 

SPL Engineer 

The SPL engineer is responsible for designing and developing the product line. 

Application Engineer 

The application engineer is responsible for customizing the product line to derive target 

applications. 

Kernel Source Code 

Kernel source code refers to source code that exists in all derived target applications. 

Variable Source Code 

Variable source code refers to optional or alternative source code blocks that are 

integrated with kernel source code based on feature selection to produce a customized 

target application. 

Separation of Concerns 

Separation of concerns refers to the separation of common and variable product line 

concerns. It involves the separation of variable source code from kernel source code into 

a variable source code file. 



www.manaraa.com

5 

Code Weaving 

Code weaving is the integration of kernel source code with optional and alternative 

source code 

Client application 

Client application refers to the client subsystem and the software objects it contains. 

Server application 

Server application refers to the server subsystem and its constituent web service 

components and database. 

1.5 Organization 

The rest of the dissertation is organized as follows. Chapter 2 contains an overview of 

related work. Chapter 3 addresses the problem statement and research approach, 

including comparison of related work with this research effort. Chapter 4 describes the 

proposed design approach using a Hotel System case study. Chapter 5 describes the three 

development approaches and their customization environment. Chapter 6 describes the 

proof-of-concept prototype that is used to support this research. Chapter 7 includes 

contributions and future research. References and appendices are attached at the end, 

including the second case study of Radio Frequency Management System. 

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

6 

2. RELATED WORK 

2.1 Introduction 

This chapter surveys other research efforts that are related to the research described in 

this dissertation. This chapter begins by defining software product lines in section 2.2. 

Section 2.3 describes the Evolutionary Software Product Line Engineering Process 

(PLUS). Section 2.4 describes the multiple-view model of software product lines used in 

the PLUS environment. Section 2.5 addresses other software product line engineering 

methods. 2.6 describes component-based software engineering. Web services are 

described in section 2.7. Section 2.8 describes Aspect-Oriented Programming, and 

section 2.9 describes frame technology. 

2.2 Software Product Lines 

A software product line is a family of systems that share common features [Gomaa92, 

Gomaa04]. It is developed by engineering a Software Product Line (SPL) that can be 

tailored to generate target systems [Gomaa99, Farrukh98, Weiss99]. Software product 

line engineering involves the analysis, design, and implementation of a product line that 

satisfies the requirements of all target applications [Sugumaran92, Gomaa04]. This can 

be achieved by capturing the commonality and variability of a family of system at the 

analysis phase, and applying this information at the design and implementation phases 

Software Product Line Engineering Based on Web Servicesالعنوان:

Saleh, Mazen M. Aquilالمؤلف الرئيسي:

Gomaa, Hassan(Super.)مؤلفين آخرين:

2005التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

:MD 618453رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

البرمجيات، الإنترنت، تقنية المعلومات، هندسة الحاسباتمواضيع:

https://search.mandumah.com/Record/618453رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618453


www.manaraa.com

6 

2. RELATED WORK 

2.1 Introduction 

This chapter surveys other research efforts that are related to the research described in 

this dissertation. This chapter begins by defining software product lines in section 2.2. 

Section 2.3 describes the Evolutionary Software Product Line Engineering Process 

(PLUS). Section 2.4 describes the multiple-view model of software product lines used in 

the PLUS environment. Section 2.5 addresses other software product line engineering 

methods. 2.6 describes component-based software engineering. Web services are 

described in section 2.7. Section 2.8 describes Aspect-Oriented Programming, and 

section 2.9 describes frame technology. 

2.2 Software Product Lines 

A software product line is a family of systems that share common features [Gomaa92, 

Gomaa04]. It is developed by engineering a Software Product Line (SPL) that can be 

tailored to generate target systems [Gomaa99, Farrukh98, Weiss99]. Software product 

line engineering involves the analysis, design, and implementation of a product line that 

satisfies the requirements of all target applications [Sugumaran92, Gomaa04]. This can 

be achieved by capturing the commonality and variability of a family of system at the 

analysis phase, and applying this information at the design and implementation phases 



www.manaraa.com

/ 

7 

[Gomaa 99]. "The goal of software product families is to improve productivity through 

software reuse. A new application system can be configured from the domain model 

given the common features (requirement) of the domain and variable features that reflect 

differences among the members of the product family" [Farrukb 1998]. 

2.3 Evolutionary Software Product Line Engineering Process 

The Evolutionary Software Product Line Engineering Process (PLUS) [Gomaa04] 

consists of two main processes, as shown in Figure 2-1: 

a) Software Product line Engineering. A product line multiple-view model, which 

addresses the multiple views of a software product line, is developed. The product 

line multiple-view model, product line architecture, and reusable components are 

developed and stored in the product line reuse library. 

b) ApplicatioQ. engineering. Involves the configuration of target applications from the 

SPL architecture and implementation. A target application is a member of the 

software product line. The multiple-view model for a target application is configured 

from the product line multiple-view model. The user selects the desired features for 

the product line member (referred to as target application). Given the target 

application features, the product line model and architecture are adapted and tailored 

to derive the · target application model and architecture. The architecture determines 

which of the reusable components are needed for configuring the executable target 

application. 



www.manaraa.com

8 

Earlier papers have described how this approach was carried out before [Gomaa96, 

Gomaa99] and after the introduction of the UML [Gomaa02, Gomaa04]. This research 

describes how product line engineering can be carried out for product lines that are based 

on Web Services. 

Product Line Multiple-View Model, 
Product Line Product Line Architecture, 
Requirements Product Line Reusable Components 

...---.... ·1 Engineering 

/' -...., 
'- ./ 

Product Line 
Reuse 

Library 
'--

Target System .....-_L-----. 
Requirements Target System 

Application 
Engineering 

Unsatisfied Requirements, Errors, Adaptations 

Figure 2-1 Evolutionary Software Product Line Engineering Process 

2.4 Multiple-View Models of Software Product Lines 

A multiple-view model for a software product line defines the different characteristics of 

a software family [parnas79], including the commonality and variability among the 

members of the family [Clements02, Weiss99]. A multiple-view model is represented 

using the UML notation [Rumbaugh99, GomaaOOa, Gomaa04] and considers the product 



www.manaraa.com

9 

line from different perspectives. The PLUS environment [Gomaa04] is based on the 

multiple-view mode for software product lines, as described in the following sections. 

2.4.1 Use Case Model for Software Product Lines 

The functional requirements of a system are defined in terms of use cases and actors 

[Jacobson97]. An actor is a user type. A use case describes the sequence of interactions 

between the actor and the system, considered as a black box. 

For a single system, all use cases are required. When modeling a software product line, 

kernel use cases are those use cases required by all members of the family. Optional use 

cases are those use cases required by some but not all members of the family. Some use 

cases may be alternative, that is different versions of the use case are required by 

different members of the family [Gomaa04]. 

2.4.2. Feature Analysis for Software Product Lines 

Feature analysis is an important aspect of domain analysis [Cohen98, Gomaa04, Griss98, 

Kang90]. In domain analysis, features are analyzed and categorized as kernel features 

(must be supported in all target systems), optional features (only required in some target 

systems), and prerequisite features (dependent upon other features). There may also be 

dependencies among features, such as mutually exclusive features. The emphasis in 

feature analysis is on the optional and alternative features, since · they differentiate one 

member of the family from the others. In modeling software product lines, features may 

be functional features (addressing software functional requirements), non-functional 



www.manaraa.com

10 

features (e.g., relating to security or performance), or parametric features (e.g., parameter 

whose value can be set differently in different members of the product line). 

In the object-oriented analysis of single systems, use cases are used to determine the 

functional features of a system. They can also serve this purpose in product families. 

Griss [Griss98] has pointed out that the goal of the use case analysis is to get a good 

understanding of the functional requirements whereas the goal of feature analysis is to 

enable reuse. Use cases and features may be used to complement each other. In 

particular, use cases can be mapped to features based on their reuse properties, 

Functional requirements that are required by all members of the family are packaged into 

a kernel feature. From a use case perspective, this means that the kernel use cases, which 

are required by all members of the family, constitute the kernel feature. Optional use 

cases, which are always used together, may also be packaged into an optional feature. 

2.4.3 Static Model for Software Product Lines 

A static model for a product line has kernel ~lasses, which ate used by all members of the 

product family, and optional classes that are used by some but not all members of the 

family. Variants of a class, which are used by different members of the product family, 

can be modeled using a generalization I specialization hierarchy. UML stereotypes are 

used to allow new modeling elements, tailored to the modeler's problem, which are based 

on existing modeling elements [Booch99, Rumbaugh99]. Thus, the stereotypes 



www.manaraa.com

11 

«kernel», «optional», and «variant» are used to distinguish between kernel, 

optional, and variant classes [Gomaa04]. 

2.4.4 Collaboration Model for Software Product Lines 

The collaboration model is used to depict the objects that participate in each use case, and 

the sequence of messages passed between them [Rumbaugh99, GomaaOO]. In product 

families, the collaboration model is developed for each use case, kernel or optional. 

Once the use cases have been determined and categorized as kernel, optional, or variant, 

the collaboration diagrams can be developed [Gomaa04]. 

For each feature, the objects that are needed to support the feature are determined and 

depicted on a feature based collaboration diagram. With this UML based approach, the 

objects are determined from the use cases. It should be noted that on the . feature based . 

collaboration diagram, the message sequence numbering, which is shown on individual 

use case based collaborations, is usually not shown. 

This view is very important as it is used to determine how the objects interact with each 

other to support a given use case. The interconnected objects in a collaboration diagram 

supporting one use case depend on (and hence communicate with) objects supporting a 

prerequisite use case. 



www.manaraa.com

12 

2.5 Other Software Product Line Engineering Methods 

There are several domain engineering methods that are used to develop family of 

systems, such as FODA [Kang90, Cohen98], RSEB [Jacobson92, Jacobson97], FAST 

[Weiss99], and KobrA [AtkinsonOO]. The above product line engineering methods are 

described in the following sections. 

2.S.1 Feature-Oriented Domain Analysis (FODA) 

Feature-Oriented Domain Analysis (FODA) is a domain analysis method that is used to 

define a family of systems [Kang90, Cohen98]. It consists of: 

a) Context analysis: Analyzes the scope of a domain. In this phase, a context model 

for the product line is developed using context diagrams. In this analysis, 

relationships between the product line and external elements are analyzed, and the 

variability is identified. 

b) Domain modeling: Identifies commonalities and differences in a family of 

systems. Multiple models are developed to represent the specified product line. 

The feature model is the heart of the FODA method. It represents the relationships 

among the features as a hierarchical tree. Some other models used here are entity

relationship models and functional models. 

c) Architecture modeling: Models a generic software architecture for a family of 

systems using the product line models. It defines the process for allocating the 

features, functions, and data objects defined inthe product line models [Kang90]. 



www.manaraa.com

13 

2.5.2 Reuse-driven Software Engineering Method (RSEB) 

Reuse-driven Software Engineering Method (RSEB) is a use case object-oriented method 

that is used to develop a family of related systems, where variability is modeled in the use 

cases using variation points that use the "extend" and "include" relations. Variability in 

use cases is introduced at these variation points [Jacobson92, Jacobson97]. 

The RSEB method includes several engineering processes: 

a) Object-Oriented business engineering: Captures business processes based on 

object-oriented use cases 

b) Map Business processes to information systems: This engmeenng process 

requires an analysis of the overall business, which include 3 sub-processes: 

• Application family engineering, which involves the development of a domain 

model and a domain architecture 

• Component system engineering, which involves the development of 

components based on the domain model and architecture 

• Application system engineering, which involves the development of new 

application systems using application family architecture and components 

[Jacabson92,Jacabson97] 

2.5.3 FAST 

Weiss and Lai have proposed the FAST method [Weiss99, Coplen98], which 

"incorporate abstraction and parameterization techniques into a configuration language 



www.manaraa.com

14 

for modeling each family member. The configuration of each family member is mapped 

to templates through a source code generator" [Shin02] that is used to produce executable 

source code. Templates represent the variations of the family members. Variations are 

identified by parameter values, which are used in the configuration language when 

generating source code. The FAST method is used in a domain that is fully described 

with parameters and templates [Weiss99, Shin 2002]. 

2.5.4 KobrA 

The KobrA method [AtkinsonOO] is a component-based product line development 

method containing two major processes: 

a) Framework engineering: The process of developing a framework that is used as a 

reusable infrastructure for developing target systems within an application 

domain. This process consists of three sub processes, which are: 

• Context Realization: Determines the scope of the framework 

• Component specification: Defines requirements 

• Component realization: Designs software architecture 

b) Application engineering: involves the development of target systems based on the 

developed framework [AtkinsonOOJ 

2.5.5 Knowledge-Based Requirement Elicitation Tool (KBRET) 

The Knowledge-Based Requirement Elicitation Tool (KBRET) was developed by George 

Mason University for the purpose of automating the process of generating target system 



www.manaraa.com

15 

specifications from a domain model [Gomaa92, Gomaa96a]. The major components of 

KBRET are: 

a) The domain-:dependent knowledge base: Derived from the object repository 

through a management user interface. It contains domain-specific information 

about a particular application [Gomaa96a]. 

b) The domain-independent knowledge base: "Contains the procedural and control 

knowledge required to generate target system specification from a domain model" 

[Gomaa96a] . 

c) The user interface manager: used to extract target system specifications based on 

user selection to desired features. 

2.5.6 Web-Based Software Product Lines 

This research was performed by Mark Gianturco [Gianturco04] to describe a new method 

for modeling web-based software product lines and generating target applications from 

them. In his research, several web-based patterns were developed to support variability 

in web page design and implementation. The patterns described in this research are: 

• WebDesign design pattern: Describes a consistent look and feel for all web pages, 

by creating an object that adds all the view functionality, allowing each web page 

to contain the additional unique functionality. 

• WebFeedback design pattern: Defines a set of objects that are used always to 

build a form submission page. These objects provide variable information to the 

submission page using stored data in the reusable entity objects. 



www.manaraa.com

16 

• WebText design pattern: Defines a set of objects that are always used to build a 

text display page. These objects provide variable information to text pages using 

stored data in the reusable entity objects. 

• WebLinks design pattern: Defines a set of objects that are always used to build a 

links page. These objects provide variable information to links page using stored 

data in the reusable entity objects. 

The above patterns were used to customize target applications by changing the con~ents 

of the reusable entity objects to satisfy the requirement of a target application. 

2.6 Component-Based Software Engineering 

Component-based software engineering is concerned with the assembly of software 

systems from prebuilt software components where components and frameworks have to 

satisfy certain specifications and middleware [BachmanOO]' A software component can 

be viewed as an architectural abstraction or as an implementation. Implementation 

components can be assembled and deployed into a larger system. Architectural 

components [Shaw96], on the other hand, express design rules in the form of a 

component model that imposes a set of standards to which components must conform 

[Kirtland99, BachmannOO]. 



www.manaraa.com

7. Component Framework 

2. Component type-
Sf,i<1dfcintertac& 

3. implements irierface 
andsatl-s:fu:/scor(rad: 

1. Componert 
impIemertafiOl'l 

4_ rndepElndoo1: 
deplo~rt 

8. Coordnatioo 

5. Component 
twes & conb8ct: 

Figure 2-2 Component-Based Design Pattern [BachmannOO] 

17 

Figure 2.2 depicts an overall approach for assembling a system from prebuilt 

components: 

1. A component - which is a software implementation of functionality; 

2. Component type- specific interfaces; 

3. A contract that must be met to satisfY certain tasks; 

4. Independently developed components that conform to certain rules in order to 

interact with other components; 

5. Distinct component types and contract to allow components to be assembled in 

a component framework; 

6. A component model, which IS a set of component types, interfaces, and 

contracts; 

7. A component framework provides different runtime services to allow for 

component interaction; 



www.manaraa.com

18 

8. Coordination servIces, which are runtime servIces that are provided by the 

component framework {BachmannOO, BassOO]. 

Component-based software applications use standards such as OMG's Object Request 

Broker Architecture (CORBA), Microsoft's Distributed Component Object Model 

(DCOM), Sun microsystem's Remote Method Invocation (RMI), and ffiM's Distributed 

System Object Model (DCOM) to enable communication between distributed 

components and to integrate different applications together [Chung03, DeiteI03]. 

The ideas behind component-based software engmeenng provide great benefits to 

software developers, such as software reuse, improved programmer productivity, and 

reduce time to market. Unfortunately, this engineering software architecture has many 

drawbacks, which led to the new invention of "web services", discussed in the next 

section. Some of these drawbacks are [BassOO, Deitel03]: 

• Lack of mechanism to make components interoperable: among the different 

standards mentioned above, interoperability is limited between them. For 

example, DCOM and CORBA components usually communicate via a 

COM/CORBA bridge. If either DCOM's or CORBA's underlying protocols 

change, programmers have to go through serious modifications to reflect the 

change. 

• Each organization is using its own standards: Each organization is developing 

their own components based on a preferred standard to provide communication 



www.manaraa.com

19 

between their developed components. As mentioned earlier, there are many 

standards or technologies that provide different solutions to component-based 

software applications. 

• Platform dependent [BassOO, Deite103]. 

2.7 Web Services 

Web services are loosely coupled software components that use· XML to exchange 

information with other applications over the Internet, Intranet, or Extranet [Govatos02, 

Deitel03, Booth04]. "The primary objective of web services is to simplify and 

standardize application interoperability within and across companies, leading to increased 

operational efficiencies and tighter partner relationships" [Govatos02]. 

A web service architecture consists of three primary functions [DeiteI03, Howard04, 

Booth04]: 

• Discovery: Web services are discovered through Universal Description, 

I 

Discovery and Integration (UDDI). It is "a specification that defines registries 

in which businesses can publish information about themselves and the 

services they provide" [Deite103]. 

• Description: Web services are described by Web Services Description 

Language (WSDL). It is a language that meant to be read by software 

applications. A WSDL document defines the messages types that a web 

service may send or receive. It also specifies the data that a requesting 



www.manaraa.com

20 

application must provide in order for this web service to perform a specific 

task. 

• Transport: Web services are transported using Simple Object Access Protocol 

(SOAP) [Deite103, Howard04, Booth04]. 

2.7.1 Advantages of Web Services 

Web services technology has solved many problems of its predecessors. Some of its 

advantages are [DeiteI03]: 

• Employ open standards using open, text-based, standards. XML is the main 

standard used for communication between web services and· other web services 

or software applications. 

• Platform independent. 

• Web services are less expensive and easier to implement compared to some of 

the leading technologies, such as DCOM and CORBA. Web services use the 

available Internet protocol fortheir communication. Therefore, expensive 

private networks could be avoided. Also, since web services communicate 

directly without the need for a broker or any middleware, development is much 

simpler. 

• Promote a modular approach to programming. 

• Can be implemented incrementally [Deite103]. 



www.manaraa.com

2.7.2 Disadvantages of Web Services 

Even though web services provide many benefits, they also create some challenges for 

application developers, such as [Deite103]: 

21 

• Lack of standard security procedures. Web services allow direct access to a 

company's information resources and applications, which can expose the network 

to hackers and viruses. The SOAP standard protocol used in the communication 

process with web services does not provide security protection. 

• Quality of service is one of the major challenges of web services. Response time, 

handling large number of requests, and infrequent update of information are some 

of the issues related to quality of service that consumers have to consider before 

using a web service. 

2.7.3 Service-oriented Architecture 

Service-Oriented Architecture (SOA) is an architectural style based on web servIces 

whose goal is to achieve loose coupling among interacting software components. A 

service is a functional process composed by a service provider to achieve desired end 

results for a service consumer [He03, Howard04]. Figure 2-3 shows a conceptual view of 

the service-oriented architecture. It consists of: client application, services interface, 

business objects, and data storage. A SOA "adds a services interface on top of the 

business objects or the legacy system that is aligned to the business processes of the 

organization, rather than to entities within the applications" [Bisson04]. The orchestration 



www.manaraa.com

22 

layer is responsible for orchestrating calls to the business objects and managing responses 

with the calling client application [Bisson04, Irek03]. 

Figure 2-3 Service-Oriented Architecture [Irek03] 

2.8 Aspect-Oriented Programming 

Aspect-oriented programming (AOP) is a new technology for enabling the 

modularization of crosscutting concerns into single units called aspects, which can then 

be integrated with the rest of the system at join points [Bodkin02, Lee02]. An aspect file 

contains modular units of crosscutting implementation. Crosscutting concerns refers to 

the encapsulation of behaviors that affect multiple classes into reusable modules. Join 

points refer to locations where application classes are affected by one or more 

crosscutting concerns [Bodkin02, Lee02, Lesiecki02]. 



www.manaraa.com

Class A ClassB ClassC 

Application f-------.! 

Aspect file 

Compiler 1-------.1 Executable 
code 

Figure 2-4 Aspect-Oriented Programming Architecture [Anastasopoulos01] 

23 

Figure 4-2 shows a conceptual overview of the weaving process between application 

classes and an aspect file to generate an integrated application that includes all pre-built 

modules of crosscutting concerns. Application classes and the aspect file are combined 

automatically using an integration engine, namely Code Weaver, and compiled to 

produce an executable source code. AspectJ [Lee02, Bodkin02] is one of the most 

popular tools developed specifically for AOP. It is based on JAVA language. It serves as 

the main engine for integrating crosscutting concerns using an aspect file. 

The purpose of using AOP technology is to reduce or eliminate source code redundancy. 

For example, logging a method to a file for debugging, running a security check, or 

opening a database connection. Many classes of the application may need to use some of 

these methods repeatedly in different locations. Separation of concerns and source code 



www.manaraa.com

24 

weaving help developers to implement these methods separately from the application, 

and then use the code weaver to insert them automatically at specified join points. 

There are some research efforts that apply AOP in the development of software product 

lines [Leasint04, Loughran04a, Anastasopoulos04]. The idea of separation of concerns 

is used to separate optional and alternative source code from kernel source code using an 

aspect file. The SPL application is customized by tailoring the aspect file to include only 

needed optional and alternative source code. The aspect file is used along with the source 

code weaver to integrate variable source code with kernel source code to generate a target 

application. 

2.9 Frame Technology 

Frame technology (FT) is based on forming hierarchical reuse assemblies of framed 

source code [Basset9?, Jarzabek03, Anastasopoulos01, Holmes03]. Source files 

are broken down into several hierarchical files, namely frames. The frame language 

composes these frames using parameterized variables and "adapt" commands. "Frames 

are source files equipped with preprocessor-like directives which allow parents 

(overlying frames) to copy and adapt children (underlying frames)" 

[Anastasopoulos01]. At the top level of the frame hierarchy lays a specification frame, 

which is used to specify children frames to be copied into parent frames at pre-defined 

locations. 



www.manaraa.com

<?xml J#elSion""'1.cn> 
<!()OCTYPe x·ffameSYSTEW "fie:J#,,-wd_1D.;.bet(odtd",:;~~tlU.;.O.dli.r'> 
<x,fralne riame"'-A:"> 

AAAbnre 
<;adapt ic'frame=''B';# 

""?xmI \lie lSi on=" 1 D''?> 
<tHlOCTYPE,..fram" SYSTEM 
"file:ll:c:"lxllIt.J iUetaidtll\xlfcU::.O.dtcr'l> 
<",frame, n_ uS',!> 

BBBbefore 
daJi,.:1r.sl'roe='uFNj 

BB " 

<"?xmI wlSloFF'1 O"?> 
<!])OCT't1"E,..frame SYSTEM' 
"fiIe:ilc:'9<vd 1 II' ~1ia\dtcP.xvcl1 0.<1111"> 
<,..frame n~"c-'>' ' - -

cee before ' 
dapfX'ffa""",,"E" 1>-

eec 
<adaJitX'ttame--"'F"fl> 
Cee:nef ' 

<t»franie:. 

?Xmiw5ion""1 D"1~' 
!DOCTYPE'x'frameSYSTEU 
tUe;lIc:lx\ld3.o -,b eta\4tdOOrcU:...o. dIIJ"> 
, , ·frame: nam.. .. "I)"> 

<?XmlvelSlon""11:J?> 
<!I)OCT'tPE,,..1rame SYSTEM 

"fiIe:mc:\Jaid_1D':"hetnJt6.Jm:l ... f_O.dId''> 

:<x .. 1ram .• · n;anle~ "e"> 

'<C?Xm!' wl'$i 0 fll'l'1 ft, .» 
<!J)OeTWE,..frame S'r'STEM , 
"1iIe:Jl:c,'I!:>i·L1D":'befa'olftdl1<ru'cI:...1_0,di&. 
<*frarne' name="'F"l> 1)1)]) 

,<lx.tr,ill'ne~ EEE 
<&-1rame>' 

"FfT 
<~fi,amv 

Figure 2-5 Example of an x-frame hierarchy [Zbang03b] 

25 

Figure 2-5 shows an example of an x-frame hi~rarchy taken from the XVeL web site 

[Zhang03b]. The example shows different levels of frames that are copied from children 

frames to parent frames using the adapt command at pre-defined locations to generate 

one application class file. 

Some research efforts have applied Frame technology to the development of software 

product lines [Loughran04b, Greenwood04]. The idea of frames and SPL is used to 

separate optional and alternative source code from kernel source code using frames. The 

SPL application is customized by tailoring the top level frame ( spec) to specify needed 

frames to be used in the composition process to generate a target application. 



www.manaraa.com

26 

2.10 Summary 

This chapter described related work for this research effort, which consists of different 

methods and environments for Software Product Line engineering. It addressed the PLUS 

environment in more detail than the other related work because of its close relevance to 

this research effort. The other methods described are: FOD~ RSEB, FAST, and KobrA. 

This chapter also described some related technologies that are used to derive target 

applications from a software product line, such as aspect-oriented programming and 

frame technology. This research effort builds on these technologies to formulate the ideas 

behind the automatic customization of product lines. 

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

27 

3. PROBLEM STATEMENT AND RESEARCH APPROACH 

3.1 Introduction 

The purpose of this research is to investigate an approach for designing, developing, and 

customizing a Software Product Line for Service-Oriented Architectures (SPL-SOA). 

This approach builds on previous research efforts on service-oriented architectures for 

single systems, web services development, component-based applications, and software 

product lines. It also builds on two development approaches: framing technology and 

aspect-oriented programming, described in the literature review of Chapter 2. 

The design approach is based on a multiple-view model for Software Product Lines 

(SPL). It addresses the engineering of an overall web service-oriented customizable 

software product line system where all processing activities are separated from the client 

application and grouped into accessible web services over the Internet. 

This research also describes three different product line customization approaches for 

SPL-SOA architecture and implementation. The three customization approaches follow 

the same design architecture, but differ in the product line development and 

customization process, with specific consideration given to each of the customization 

methods described in this research. 

Software Product Line Engineering Based on Web Servicesالعنوان:

Saleh, Mazen M. Aquilالمؤلف الرئيسي:

Gomaa, Hassan(Super.)مؤلفين آخرين:

2005التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

:MD 618453رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

البرمجيات، الإنترنت، تقنية المعلومات، هندسة الحاسباتمواضيع:

https://search.mandumah.com/Record/618453رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618453


www.manaraa.com

27 

3. PROBLEM STATEMENT AND RESEARCH APPROACH 

3.1 Introduction 

The purpose of this research is to investigate an approach for designing, developing, and 

customizing a Software Product Line for Service-Oriented Architectures (SPL-SOA). 

This approach builds on previous research efforts on service-oriented architectures for 

single systems, web services development, component-based applications, and software 

product lines. It also builds on two development approaches: framing technology and 

aspect-oriented programming, described in the literature review of Chapter 2. 

The design approach is based on a multiple-view model for Software Product Lines 

(SPL). It addresses the engineering of an overall web service-oriented customizable 

software product line system where all processing activities are separated from the client 

application and grouped into accessible web services over the Internet. 

This research also describes three different product line customization approaches for 

SPL-SOA architecture and implementation. The three customization approaches follow 

the same design architecture, but differ in the product line development and 

customization process, with specific consideration given to each of the customization 

methods described in this research. 



www.manaraa.com

28 

Software product line customization is one of the major obstacles that faces SPL 

application engineers starting from a product line architecture and implementation. In this 

research, different customization methods will be described and supported by a product 

line independent customization prototype to help developers and application engineers 

configure a SPL application and generate target systems automatically from the reusable 

service-oriented product line architecture and components. 

3.2 Problem Statement 

Current approaches do not address the design, implementation, and automatic 

customization of software product lines based on web services. It is necessary to extend 

the current approaches for modeling single web services-based systems to address the 

unique issues of software product lines. It is also necessary to introduce an automated 

software development environment, based on separation of common and variable product 

line concerns, to allow developers to design, implement, and automatically customize 

web services-based software product lines to derive executable target applications. 

3.3 Research Approach 

This research will be based on the Evolutionary Domain Life Cycle (EDLC) and Product 

Line UML-based Software Engineering environment (PLUS) [GomaaOO,Gomaa04], 

described in Chapter 2, for deVeloping the new concepts. 

This research covers the two major phases of the EDLC: 

• Software Product line Engineering phase, which includes: 



www.manaraa.com

29 

The development of a multiple-view model for web services-based 

software product lines. 

The development of a SPL service-oriented architecture. 

The development of reusable components 

• Application Engineering. This phase covers the customization of the software 

product line to generate executable target systems. 

The PLUS method uses the UML notation to model product line software. This research 

uses the PLUS method in the development of the multiple-view model for web services

based software product lines. 

The following list summarizes the research activities that will be performed: 

a) Develop a design approach for software product line service-oriented architecture. 

b) Design three software development environments to support the automatic 

customization of SPL architecture and components: 

• Development of Dynamic Client Application Customization (DCAC). 

• Development of Dynamic Client Application Customization with 

separation of concerns (DCAC-SC). 

• Development of Static Client Application Customization with separation 

of concerns (SCAC). 

c) Develop a proof-of-concept prototype to support the above three development 

environments. 



www.manaraa.com

30 

d) Apply the web services-based software product line to two case studies to validate 

this research. 

The following sections describe these research activities in more detail. 

3.4 Design method for software product line service-oriented 
architecture 

The design approach is based on a multiple-view model for Software Product Lines. The 

multiple-view model defines the different characteristics of a software family [Pamas79], 

including the commonality and variability among the members of the family 

[Clements02, Weiss99]. A multiple-view model is represented using the Product Line 

UML-based Software Engineering enviroQment (PLUS) [GomaaOO, Gomaa04], which is 

extended in this research to include the design of product lines based on web services. 

The design approach is illustrated by means of a case study of a hotel software product 

line. In this case study, a hotel product line is created for a hotel chain, which can be 

automatically customized to serve the needs of individual hotels. 

This activity will cover the following multiple-view models: 

• Use case modeling 

• Feature modeling 

• User interface navigation modeling 

• Interaction modeling 



www.manaraa.com

31 

• Activity modeling 

• Software architecture modeling 

• Entity class modeling 

• Component interface modeling 

From the above multiple-view models, certain models are addressed differently in this 

research to cover the unique issues related to the design of Software Product Line Web 

Service-Oriented Architecture (SPL-SOA): user interface navigation modeling, 

interaction modeling, activity modeling, software architecture modeling, and components 

interfaces modeling. The other models are used to complete the case study. The use case 

model is used to describe the functional requirements of SPL. The feature model is used 

to depict the kernel, optional, and alternative features in the SPL. The entity class model 

is used to depict the needed input when developing web services. 

3.5 Development environments 

This section describes software development environments to support the design and 

customization of Software Product Line Web Service-Oriented Architecture, in which 

service functionality is separated from the client side of the application and grouped into 

accessible web services over the Internet. The three development approaches are based 

on a client/server design pattern. Client applications contain only user interfaces and 

customizable workflows that are responsible for orch~strating web services invocation 

and user interface objects calls. The client application is treated as white box reuse. The 



www.manaraa.com

32 

architecture and implementation are customized according to one of the three 

customization approaches. The server application contains all web services and database 

support. Web services are treated as black box reuse of services. They are either used or 

not used based on the customization of the client application. The three development 

approaches will follow the same design approach described in section 3.4. However, they 

will differ in how separation of concerns is used for software development and 

customization. The three approaches are: 

1. Development of dynamic customization of client application (DCAC): Dynamic 

customization is defined in this research as customization of application objects at 

system run time. Objects are customized using a customization file that contains 

the target system selected features and values of parameterized variables. 

2. Development of dynamic customization of client application with separation of 

concerns: The second development approach is an extension to the first method 

(DCAC) to include the separation of concerns. It is based on the dynamic 

customization of client applications, where obj~cts are customized at system run 

time using a customization file. However, this method includes the separation of 

concerns, where optional and alternative source code is separated from kernel 

source code and placed in a variable source code file. During source code 

integration (referred to as code weaving), the variable source code file is used to 

integrate kernel source code with optional and alternative source code. The result 

of the integration process is a combined set of source code for the entire software 



www.manaraa.com

33 

product line, including all optional and alternative source code. The source code 

for the integrated SPL system is identical to that produced by the first method 

(DCAC). 

Separation of concerns is used to reduce complexity of developing software 

product lines and improve system maintenance by separating variable source code 

from kernel source code. Variable source code can be manipulated separately 

within the SPL environment and then automatically integrated with kernel source 

code. 

3. Development of static customization of client application with separation of 

concerns: Static customization is defined in this research as customization of 

application classes at system derivation time. Classes are customized by 

integrating kernel source code with only the selected optional and alternative 

source code from the variable source code file. In this approach, there is no 

customization at system run time. The integration process is based on feature 

selection and an integration method that is included in the proof-of-concept 

prototype provided with this research. This approl;lch is suitable for memory 

constrained SPL applications that require distribution of only needed target 

application source code. 



www.manaraa.com

34 

3.6 Proof-of-concept development environment 

A proof-of-concept Software Product Line Environment Prototype (SPLET) is developed 

to support this research. It includes the following components: 

• SPL feature editor: 

Allows SPL engineers to create a feature dependency tree and define 

feature relations. 

Allows SPL engineers to create parameterized variables for each 

parameterized feature. 

Allows SPL engineers to define mappings between features and related 

web service components . 

. Allows SPL engineers to define mappings between features and related 

artifacts, such as specifications, designs, and test procedures. 

• Web service editor: 

Allows SPL engineers to enter web service components and link them to 

their location on the Internet. The entered web service list is used by the 

SPL engineers to map web services to features using the feature editor 

component. 

• Feature selector: 

Allows application engineers to select desired features 

Allows application engineers to enter values for parameterized variables 



www.manaraa.com

35 

• Consistency checker: This component is part of the feature editor. It serves as a 

checker for selecting features. When a feature is selected, the consistency checker 

is invoked to verify selection. 

• Customization file generator: This component is responsible for automatically 

generating a customization file that is required for the dynamic customization of 

client applications at system run time. It is based on the feature selector 

component. It sets feature selection status to true/false and stores values of 

parameterized variables. 

• Variable source code editor: Creates a variable source code file that stores related 

optional and alternative source code for each feature to be used in the integration 

process. 

• Code tracker: This component is used to locate optional and alternative source 

code in the variable source code file and kernel source code. 

• Code weaver: This component is used for the integration process. It is responsible 

for integrating kernel source code with optional and alternative source code using 

the automatically generated variable source code file and feature selection. 

• File extractor: This component is used to retrieve specifications, designs, source 

code, and test procedures for the selected features. 



www.manaraa.com

Figure 3.1 summarizes the proof-of-concept prototype SPLET. 

Feature Modeling 

- Creates a feature dependency tree and defmes 
feature relations. 

- Creates parameterized variables for each 
.___________ feature 

- Links each feature to related speciftcations, 
designs, test procedures, and implementation 
components. 

- Enters web service components and link them 
L:l12~lli22+--··---··--- ··---·· - - -··- 1 to their location on the Internet. 

Customization components 
- Selects desired features 

1---··--_··_-_··_--··---1 - Enters values for parameterized variables 

~ ___ ~~ ____________ ___ I veriftes feature selection 

Generates a customization ftle that is required 
for the dynamic customization of client 

---------------- applications at system nm time. 

Separation of concerns & integration components 

Utility 

Creates a variable source code ftle that stores 
vana[~Je'.iSOtllree l---~~---~~---~~ -- - .. --- .I related optional and alternative source code for 

each feature to be used in the integration 
process 

______________ __ _ Tracks insertion code in the variable source 
code ftle and the kernel source code 

Integrates kernel source code with optional and 
~----.----.- ---. ------- i alternative code using a variable source code 

ftle and a customization ftle 

:2Rthl~t6r4-- ----~---- .-- -- .----4 Extracts speciftcations, designs, source code, 
'01' and test procedures of selected features 

Figure 3-1 SPLET components 

36 



www.manaraa.com

37 

3.7 Validation 

Apply the software product line service-oriented approach to two case studies to validate 

this research. The two case studies will be designed and implemented according to the 

proposed architecture. The two implementations will be customized to generate 

executable target systems. The proof-of-concept prototype SPLET will be used in the 

development of the environment of the two case studies and for the customization 

process. The two case studies are: 

• Hotel system 

• Radio Frequency Management System 

This research's experimentations will be based on Microsoft .NET environment. 

Developed web services will be installed on a server with .NET framework support and 

Microsoft Internet Information Service (lIS). The generated target systems will be 

installed either on the same server or a client workstation that is connected to the server 

through an Extranet connection. 

• 



www.manaraa.com

38 

3.8 Comparison with other approaches 

This research builds on previous research efforts. The following sections compare this 

research with other known research. Broadly, these research efforts can be classified into 

two categories: software architecture and software development approaches. The 

breakdown of comparisons under each category: 

• Software architecture and product line research 

Service-Oriented Architecture (SOA) 

Component-Based Architecture (CBA) 

- web-based software product lines 

- Feature Oriented Domain Analysis (FODA) 

- Family-Oriented Abstraction, Specification, and Translation (FAST) 

- Reuse-driven Software Engineering Method (RSEB) 

• Software development approaches and tools 

- Aspect-Oriented Programming (AOP) using AspectJ 

- Frames technology using XVCL 

- Knowledge Base Requirement and Elicitation Tool (KBRET) 

3.8.1 Comparison with other software architectures and product line 

research 

Service-Oriented Architecture (SOA) is an architectural style whose goal is to achieve 

loose coupling among interacting software components, which requires developers to 

design applications as collections of services [Irek03, Key04]. SOA is described in terms 



www.manaraa.com

39 

of composing a single system using web services. This research builds on the concept of 

SOA with special concentration on the product line unique features, for the purpose of 

composing executable target systems. 

Component-Based Architecture (CBA) is concerned with the assembly of software 

systems from prebuilt software components where components and frameworks have to 

conform to certain specifications and middleware [BachmanOO]. The PhD dissertation of 

Ghulam Farrukh [Farrukh98] builds on the concept of CBA using configurable 

components in the development of software product lines. F arrukh' s research presents a 

method, which maps a SPL model to a SPL architecture, which is then developed as a 

collection of reusable components and stored in a reusable library [Farrukh98]. 

Components of the entire SPL application are treated as black boxes. Hence the internal 

source code of the components is reused without any modification. This research, on the 

other hand, is based on software product line for SOA. It addresses the engineering of an 

overall web service-oriented customizable software product line system where all 

processing activities are separated from the client application and grouped into accessible 

web services over the Internet. The internal source code of client applications is treated as 

a white box reuse of source code. The client source code is automatically customized 

according to one of the customization approaches, which are included in this research. 

Black box reuse is used for web services components 

The PhD dissertation of Mark · Gianturco [Gianturco04] described a new method for 

modeling and generating target applications for web-based software product lines. In his 



www.manaraa.com

40 

research, several web-based patterns were developed to support variability in web pages. 

This research also supports variability in software product lines, but differs in the 

customization process of target applications. Customization in Gianturco's research is 

based on the modification of the entity objects that are read by the visible web page 

objects to display variable input, text, and links to other web pages, keeping a consistent 

look and feel of all web pages of target applications. The customization described in this 

dissertation is based on feature decisions that are set using a customization file at run 

time for the dynamic customization approach, or the integration of kernel source code 

with variable source code during code binding time for the static customization approach 

using the concept of separation of concerns. 

Feature-Oriented Domain Analysis (FODA) is a domain analysis method that is used to 

define a family of systems [Kang90, Cohen98]. The FODA method focuses more on 

structured analysis than object oriented multiple-view modeling. It includes feature 

models, ER diagrams, and functional models. This research builds on the PLUS method, 

where features are used to define a family of systems using objects-oriented analysis, 

design, and programming. It includes feature models, user interface navigation models, 

interaction models, activity models, entity class models, and component interfaces 

models. The multiple-view model in this research focuses on designing a SPL service

oriented auto-customizable system. This research goes further from design to 

implementation to cover the relationship between implementation source code and 

features for the purpose of customizing and deriving target systems. 



www.manaraa.com

41 

Reuse-driven Software Engineering Method (RSEB) is a use case object-oriented method 

that is used to develop a family of related systems [Jacobson92, Jacobson97]. Variability 

is modeled in the use cases using variation points that include "extend" and "include" 

relations. Variability in use cases is introduced at these variation points. This research 

goes beyond use case modeling into more detailed design to support the development of 

customizable SPL systems. Rather than using only variation points to include or extend 

use cases, customization in this research is based on feature selection, where a feature can 

have one or more use cases. 

Family-Oriented Abstraction, Specification, and Translation (FAST) approach is based 

on the idea of incorporating abstraction and parameterization techniques into a 

configuration language for modeling each member of the software product line. The 

configuration of each family member is mapped to templates through a source code 

generator [Weiss99]. Target application derivation is based on selecting needed 

templates and creating instances of selected templates. Templates are then manually 

updated to satisfy the requirement of a target application. Updated template~ are then 

integrated with kernel source code using the source code generator. The content of 

templates in FAST has limited capability forcustomization. Templates are either selected 

or not selected, and selected templates have to be manually updated. Customization in 

this research is based on automatic adaptation to selected features at system run time 

using a customization file, or customization by integrating selected optional and 

alternative variable source code with kernel source code. This research provides a design 



www.manaraa.com

42 

method and three flexible development approaches and automatic customization methods 

with supporting tools to enable developers and application engineers to produce highly 

customizable systems that do not require manual update of source code for each target 

system. 

3.8.2 Comparison with development approaches and tools 

This section compares this research with known development approaches for software 

product lines and their related tools that are used for customizing target systems. 

Aspect-oriented programming (AOP) is a new technology for enabling the 

modularization of crosscutting concerns into single units called aspects, which can then 

be integrated with the rest of the system at join points [Bodkin02, Lee02]. AOP 

technology is used by several researches to define and manipulate variability in software 

product lines using aspect files. Aspect files contain specific source code for crosscutting 

concerns of variable source code. AOP has no systematic approach for creating these 

aspect files and selecting desired variable source code. Aspect files are created in an ad

hoc way for each target system. Keeping track of all aspect files and variable source code 

is very troublesome and error-prone in AOP. Also, feature related mapping of source 

code and features are not performed, neither consistency checks are performed based on 

selected features. This research provides a systematic approach in modularizing 

crosscutting concerns. Optional and alternative source code is grouped based on its 

related features in a variable source code file. Application engineers can simply select 

desired features and run consistency checks using the customization prototype provided 



www.manaraa.com

43 

with this research, and the proper source code will be automatically integrated to generate 

an executable target system. There is no need for manual modification to source code to 

derive a target application, as it is required in AOP for product lines. 

AspectJ [Lee02, Bodkin02] is one of the most popular tools developed specifically for 

AOP. It is based on JAVA language. It serves as the main engine for integrating 

crossCutting concerns using an ad-hoc aspect file. Unlike AspectJ, the SPL environment 

prototype (SPLET) creates a complete environment for the SPL application. All variable 

source code is contained in SPLET by associating variable source code with the SPL 

system features. Optional and alternative source code is automatically integrated with 

kernel source code using SPLET's code weaver component by selecting target system 

features and applying consistency checks. Also, SPLET is designed to support most 

popular languages such as C++, C#, JAVA, J++, and visual Basic. 

Frame technology (FT) is based on forming hierarchical reuse assemblies of framed 

source code [Basset97, Jarzabek03, Anastasopoulos01, Holmes03]. Source files 

are broken down into several hierarchical files, namely frames. The frame language 

composes these frames using parameterized variables and "adapt" commands. In an 

object-oriented application, frame files can grow large in number and become very 

difficult to manage and maintain. Similar to AOP, frames do not describe how to map 

features to source code, and do not provide consistency checks to verify whether a set of 

frames is consistent with the SPL model. This research provides a systematic approach 



www.manaraa.com

44 

for relating source code to features for the purpose of automating customization of SPL 

applications. 

XVCL [Hongyu03] is one of the recently developed tools for frame technology in the 

SPL domain. It serves as an engine for integrating frames together based on pre-defined 

variables. Similar to AspectJ, it does not cover the SPL life cycle and has no automation 

to select integrated code. 

Knowledge Base Requirement and Elicitation Tool (KBRET) [Gomaa92, Gomaa96a] 

was developed to support feature selection of SPL systems and apply consistency checks 

to verify selections. Feature navigation in KBRET does not show the overall breakdown 

of the system features and related designs and implementation components. SPLET 

enables designers, developers, and application engineers to visualize the entire SPL 

system more conveniently. SPLET provides a facility to see and extract all analysis, 

designs, code, and test procedures for each feature separately. It also provides a facility to 

execute web services components automatically for functional testing of components 

without leaving the environment. SPLET includes a facility to create separation of 

concerns between optional and alternative source code from kernel source code and an 

integration engine for automatic generation of executable target systems by selecting 

target system features and applying consistency checks. 



www.manaraa.com

45 

3.9 Summary 

This chapter has addressed the problem statement for this research and explained the 

research approach and the breakdown of tasks to be performed. It also provided an 

overall comparison with related software design architectures and different development 

approaches including their related tools. The design approach will be described in the 

next chapter. 

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

46 

4. A DESIGN METHOD FOR SOFTWARE PRODUCT LINES 
BASED ON WEB SERVICES 

4.1 Introduction 

This chapter describes the software product line modeling approach for product lines 

based on Web Service-Oriented Architectures. The Evolutionary Software Product Line 

Engineering Process (PLUS) [Gomaa96, Gomaa99, Gomaa04] is used to show the major 

activities performed in the development of the proposed Software Product Line (SPL) 

based on Web Services. 

Product Line Multiple-View Model, 
Product Line Product Line Architecture, 
Requirements Product Line Reusable Components 

.----_+, Engineering 

r -..., 
'-- -'" 

Product Line 
Reuse 

Library 
'-

Target System 
Requirements .----"------, Target System 
------.j Application 

Engineering 

Unsatisfied Requirements, Errors, Adaptations 

Figure 4-1 Evolutionary Software Product Line Engineering Process 

Software Product Line Engineering Based on Web Servicesالعنوان:

Saleh, Mazen M. Aquilالمؤلف الرئيسي:

Gomaa, Hassan(Super.)مؤلفين آخرين:

2005التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

:MD 618453رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

البرمجيات، الإنترنت، تقنية المعلومات، هندسة الحاسباتمواضيع:

https://search.mandumah.com/Record/618453رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618453


www.manaraa.com

46 

4. A DESIGN METHOD FOR SOFTWARE PRODUCT LINES 
BASED ON WEB SERVICES 

4.1 Introduction 

This chapter describes the software product line modeling approach for product lines 

based on Web Service-Oriented Architectures. The Evolutionary Software Product Line 

Engineering Process (PLUS) [Gomaa96, Gomaa99, Gomaa04] is used to show the major 

activities performed in the development of the proposed Software Product Line (SPL) 

based on Web Services. 

Product Line Multiple-View Model, 
Product Line Product Line Architecture, 
Requirements Product Line Reusable Components 

.----_+, Engineering 

r -..., 
'-- -'" 

Product Line 
Reuse 

Library 
'-

Target System 
Requirements .----"------, Target System 
------.j Application 

Engineering 

Unsatisfied Requirements, Errors, Adaptations 

Figure 4-1 Evolutionary Software Product Line Engineering Process 



www.manaraa.com

47 

The Evolutionary Software Product Line Engineering Process consists of two main 

phases, as shown in Figure 4-1 : 

c) Software Product line Engineering. A product line multiple-view model, which 

addresses the multiple views of a software product line, is developed. The product 

line multiple-view model, product line architecture, and reusable components are 

developed and stored in the product line reuse library. 

d) Application Engineering. A target system is a member of the software product line. 

The multiple-view model for a target system is configured from the product line 

multiple-view model. The user selects the desired features for the product line 

member (referred to as target system). Given the target system features, the product 

line model and architecture are adapted and tailored to derive the target system model 

and architecture. The architecture determines which of the reusable components are 

needed for configuring the executable target system. 

Earlier papers and researches have described how this approach was carried out before 

[Gomaa96, Gomaa99] and after the introduction of the UML [Gomaa02, Gomaa04]. This 

chapter describes how product line engineering can be carried out for product lines based 

on Web Services. 

This chapter covers the design of the SPL Engineering Phase based on Web Service

Oriented Architectures. The design, implementation, and configuration approach 

mentioned in this research is focused on SPL for a chain of systems that belong to a 



www.manaraa.com

48 

single organization, for example, a chain of Hilton hotels or Avis car rentals, where many 

branches are distributed in different locations. Each branch will have a software system 

customized to its needs based on available facilities. This research addresses the 

engineering of an over all Web Service-Oriented customizable software product line 

system where all functional activities are separated from the client application and 

grouped into accessible Web Services over the Internet. The customizable client 

application contains: 

• Customizable navigation screens 

• Events workflows. 

Both contents are described in detail later in this chapter. 

Once the Software Product Line is designed and developed, target systems are 

customized through the domain independent customization prototype, described in 

Chapter 6, for deciding which screen to display, which web service to invoke, and what 

parameterized variables to use, based on selected features. 

4.2 Design Architecture of SPL Engineering Phase 

The design architecture is based on a multiple-view model for Software Product Lines. 

The multiple-view model defines the different characteristics of a software family 

[Parnas79], including the commonality and variability among the members of the family 

[Clements02, Weiss99]. A multiple-view model is represented using the UML notation 

[Rumbaugh99, GomaaOO] and considers the product line from different perspectives. 



www.manaraa.com

49 

This section describes the software product line modeling approach for product lines 

based on Web Services. In particular, the multiple-view modeling approach described in 

Chapter 3 needs to be tailored for modeling product lines based on Web services. The 

method is described by means ofa hotel software product line (SPL), which is used as an 

example of applying the software design method for software product lines based on web 

services. In this example, a Hotel product line is to be created for a hotel chain, which can 

be customized to the needs of individual hotels. 

4.2.1 Use Case Modeling 

Figure 4-2 depicts the Use Case diagram for the Hotel SPL, which captures the overall 

software requirements. The Use Cases in Figure 4-2 are categorized as kernel, optional, 

or alternative as given by the PLUS environment [Gomaa04]: 

• Kernel: Use case that exists in all members of the product line. 

• Optional: Use case that mayor may not exist in a given product line member. 

• Alternative: One of a group of alternative use cases is selected for a given product 

line member. 

The actors for this use case model are the users of the product line, providing inputs to a 

product line member system and receiving outputs from it. 

• Reservation Clerk - Performs actions pertaining to room reservation. 

• Front Desk Clerk - Performs duties pertaining to check-in and checkout of hotel 

rooms and walk-in reservations. 

• Manager -Updates hotel prices and request management reports. 



www.manaraa.com

50 

• Restaurant Staff - Add restaurant charges to guests' billing records. 

• Timer - Controls the initiation of periodic hotel functions at a predetennined 

time. 

Briefly, the use cases are: 

• Make Room Reservation: A reservation or check-in clerk makes reservations for 

one or more rooms. Users will also be able to cancel reservations, update 

reservations, query reservations, and verify customer credit cards. 

• Make Residential Reservation As an alternative to room reservation, a hotel can 

consist of residential suites, where a guest can occupy a suite for a month at a 

time, paying a monthly rate. A guaranteed reservation is required for residential 

suites, with payment made on the first day of the month. 

• Make Block Reservation: A travel company can book a block of rooms for their 

customers. The travel company will be billed directly instead of billing customers 

individually. Check in and check out will be made for the reserved block. 

• Check-in Single Customer: The front-desk clerk checks in guests with single 

room reservations. 

• Check-in Block Customer: The front-desk clerk checks in guests with block 

reservations. 

• Checkout Single Customer: The front-desk clerk checks out guests with single 

reservations. 



www.manaraa.com

51 

• Checkout Block Customer: The front-desk clerk checks out guests with block 

reservations. 

> 
MakeResidentiaI 

eservation 

Make Room ~ ~ Reserwlioo 

~
<OpIioo8> 

Reservation Cl&tk Make Block 
Reserwtioo 

< em > 
ChecIcin SIngle 

customer 

< > 
Chedrout SIn~e 

CUstomer 

Checkout BIocf< 
CUstomer 

~ 

~ ------~ 
Ti"",,~ <~ 

AutoC8ncel 

<<optimal» 
Generate Auto key 

~Q 
~--A 

«kernel» 
Update Prices 

Restaurartstaff 

Figure 4-2 Use Case Diagram 

• Generate Auto Key: Some hotels may use electronic cards for door keys rather 

than regular door keys. Assigned room numbers will be encoded on the electronic 

cards. 

• Auto Billing: At a pre-specified time, bills customers who have guaranteed 

reservations and do not show up. 



www.manaraa.com

52 

• Auto Cancel: At a pre-specified time, cancels non-guaranteed reservations. 

• Bill Restaurant Charges: Restaurant charges are added to guest billing record. 

• Update prices: Allows managers to update room prices. 

• Print Reports: Allows managers to request reports such as: No-show reports, 

reservation reports, financial reports. 

4.2.2 Feature Modeling 

A feature dependency model is derived from the use case model. Product line features are 

categorized as kernel, optional, or alternative features. By selecting the features required 

for a given member of the product line, an application can be derived from the product 

line. Related features are grouped together into feature groups. The possible feature 

groups are: 

• Mutually exclusive groups: Zero or one feature can be selected out of a group of 

features. 

• Exactly one of feature group: One and only one feature can be selected out of a 

group of features. 

• Zero or more of feature group: Zero or more features can be selected out of a set 

of features. 

• Mutually inclusive group: If one feature is picked the other feature(s) in the group 

must be picked. 

The feature model (Fig. 4-3) depicts the features, feature dependencies, and feature 

groups for the· hotel product line. In this model, "RoomReservation" and 



www.manaraa.com

53 

"ResidentialReservations" are two alternative features grouped under an exactly-one-of-

feature-group, where the "BlockReservation", "AutoCancel", and "AutoNoShowbilling" 

optional features depend on the "RoomReservation" alternative feature. If "Residential 

Reservation" is selected instead, the above optional features would not be available for 

the derived application. 

/' "\. ............... 
,/ , .............. 

... '" '''''.... ... ............ -

? 

I.... .... .... 

C7 ~ r::; I ~~ I 'L..".---' ---r' 
, , 

I
<k>,! F
~~I--I 

'" ... " I l"" 
I \', 
I 1 '" I 

~ 1\ ~~ ___ i 
1 K --~_ 

\ " 

" , , \ , \ 

~r::""""'-"-'------' \\ , , , , , 
\ 
\ , 

\ , 
\ , , 

r=-: 1 

I~':"-I '[:;.. I ~--I 
I 
I 
I r _____________________________________________ ~ 

Figure 4-3 Feature Dependency Model 

4.2.3 User Interface Navigation Modeling 

Since this design method is based on a service-oriented architecture for the product line, 

it is important to show the navigation between user interface screens. Each user interface 

screen is supported by a user interface object, which is in tum associated with one or 

more Web services. Each user interface object contains a GUI and a customizable 



www.manaraa.com

54 

workflow for members of the software product line. The GUI will be r~sponsible for 

accepting user input and user requests to initiate events that are translated into method 

calls to web services. After receiving the user input, the user interface object interacts 

with the appropriate Web service. 

Figure 4-4 shows the system navigation from the user perspective. Each user interface 

screen is supported by a user interface class, which is categorized as kernel, optional, or 

alternative. Each class is depicted with two stereotypes, the role stereotype is «user 

interface» and the reuse stereotype, such as <<kernel» or «optional». The 

navigation model depicts the user interface classes that can be accessed from a given user 

interface class. For example, from the Main Reservation user interface, the Room 

Reservation user interface can be reached. Based on the features desired for a given 

product line member, all kernel classes will be selected, some of the optional classes will 

be selected, and a choice is made among alternative classes. Each user interface object 

interacts with relevant web services, which is shown in the dynamic model. 



www.manaraa.com

55 

- , ...... ,- ,- ,-

I 
«~onaJ» 

",c:userintel1aces» 

-"""""'" - - -

F.gure 44 User Interface Navigation Model 

Figure 4-5 shows a sample GUI for the "RoomReservation" user interface class, one of 

the classes that is depicted on the navigation model in Figure 4-4. 



www.manaraa.com

56 

Figure 4-5 GUI-RoomResenration UI 

4.2.4 Interaction Modeling 

Next, the interaction between the user interface object, described in the previous section, 

and the appropriate Web service is modeled. This section describes the interaction 

between the user interfaces and web services. Figure 4-6 is a collaboration diagram for 

"RoomReservation" user interface object for processing a reservation for a single room. 

Since the core functionality is encapsulated in Web services classes, the collaboration 

diagram shows the interaction at a high level. To reserve a room, the system requires 3 

web services: AvailabilityWS, CreditWS, and ReserveRoomWS. The user interface 



www.manaraa.com

57 

object accepts the guest's information and directs the input to the appropriate web service 

as shown in Figure 4-6. 

1: provide guest info 

~ «variant» 
«user interface» 

:RoomReservatjon 

2:validate ClC 
~ 

« kernel» 
<<web service» 

CreditWS 

«variant» 
«web service» 

RoomReservationWS 

6: Confirmed i J, 5: check and 
availability update availability 

« kernel» 
«web selVice» 

AvailabilityllllS 

Figure 4-6 Collaboration Diagram - Reserve single room 

Figure 4-7 provides more detail describing the object interaction within each web service 

and between web services and user interface. 



www.manaraa.com

58 

« varient» 

I 
«keme~> I <<web gel\lice» 

" · .Make~ 
«web service» RoomReservationWS I <<varient» I I «~» I CreditWS «control» «bus. Logic» 

:Rese!yeRoom I f!Jl. R~.I :MakeReservalion 

2:validale CIC T 13: CK: validated --.. - ~ 
1: provide guest 86. Create 

S1.R~nink 86. C~ ~ billing record 
~ I «variant» I reservation ""-

«user inlelface» I ~ I . RoomReservatjon 86: send reservation number I «kernel» 

I I 
«kernel» 

I and sIatus (available] «entity» <<entity» 
:Reservation :!l!I!inaReroro 

01 =82: check and .J, t 07=83: Conftrmed availability update availability 

«~I» 

<<web service» 
Availabili!yWS 02. Request I <~ep> I decrement ~ type I «kernel» 

I «control» I «bus. Logic» 
'SelSlogleAvailablll\y I ~ ·~wililb.ilillt 06. Set availability 

confirmation 

03. Read room type count 1 j04.Room 05. Decrement room count type count 
(roomCount> 0] 

I 
«kernel:» 

I «entity» 
'BoomCount 

Figure 4-7 Expanded Collaboration Diagram - Resenre single room 

4.2.5 Activity Modeling 

The activity diagrams, in the SPL Service-Oriented approach, describe the workflow of 

each event initiated by the user. Each user interface object is associated with one or more 

workflows. Workflows have two major tasks: 

• Invoke web services: Workflows show the sequence III which web servIces 

methods are called for processing a complete event. 

• Invoke other user interfaces: Workflows show the navigation pattern in which 

other user interfaces are invoked. 



www.manaraa.com

59 

The workflow for the SPL Service-Oriented architecture is customized during target 

system configuration. Figure 4-8 shows a customizable activity diagram for the 

"MainReservation" user interface. "ResidentiaIReservation" VI and "Room Reservation" 

VI are mutually exclusive alternatives where only one of them can be invoked by the 

user. During customization, a path will be selected for the application to identify which 

GVIs or web services will be invoked. Feature conditions are used for this purpose. For 

example, [feature = RoomReservation] and [feature = ResidentialReservation] are two 

feature conditions used in the activity diagram of Figure 4-8 to show the mutually 

exclusive feature decisions in the workflow. The customization ofworkflows is described 

in detail in Chapter 5. 

[feature=RoomReservation 
AND RoomReservation is 

selected] 

Invoke Room 
Reservation UI 

Customize 

[exit] ~ 

>--"----'-----------. 

[feature=ResidentiaIReservation 
D ResidentiaiReseIVation is 

selected] 

Invoke 
Residential 

Reservation UI 

[feature=BlockReselVation 
AND BlockReservation is 

selected] 

Invoke Block 
Reservation UI 

Figure 4-8 Activity Diagram- Main Reservation 



www.manaraa.com

60 

Figure 4-9 is an overall activity diagram for the "RoomReservation" UI. It shows all the 

possible events that can be in.tiated by a user and all web service method calls. 

Figure 4-9 Activity Diagram - Overall Room Reservation UI 

Figure 4-10 shows a sample workflow for processing a single room reservation. The 

activity diagram in this figute shows the workflow and required web service methods for 

reserving a single room. Once the front desk clerk verifies the guest's credit card by 

calling the "CreditWS" web service, reservation can be made by calling the 

"ReserveRoom WS" web services. 



www.manaraa.com

[Verify etC selected] 

Call 
CreditWS.Verify 

CCO 

Display C/C 
verification info 

Customize 

[exit] • 
>-----'---"---=----~ 

[reserve room selected] 

Call 
RoomReservation 

WS.ReserveRoomO 

[not available] 

Figure 4~ 10 Activity Diagram-Reserve Room 

4.2.6 Software Architecture Modeling 

4.2.6.1 Web Services 

61 

From the activity modeling, all possible service requests are identified. These services are 

organized and grouped into related web services based on their objects interaction, 

described in section 4.2.4 - Interaction Modeling. Figure 4-11 shows a sample grouping 

of methods into Web Services. For example, ReserveRoom Web Service contains these 

related methods: Reserve Room, Cancel Room, Modify Room, Check-in Room, and 



www.manaraa.com

62 

Check-out Room. These methods may share internally some of the web service objects. 

However, all objects are hidden within each web service. They can not be inherited by 

other web services. For example, the entity class RoomCount is used by ReserveRoom, 

ModifyRoom, and CancelRoom methods in the RoomReservationWS web service. The 

RoomCount entity is used to store room availability information. The above methods 

update this entity using different business logic objects. 

<<varianl» 
«web service» 

RoomRese!VationWS 

ReserveRoom() 
ModiryRoomO 
CancelRoom() 
CheckinRoomO 
CheckoutRoomQ 

«optional» 
<<web service» 

AutoKeyWS 

encodeKeyO 

«varianl» «optional» 
«web service» <<web service» 

ResidentialReservationWS BIockRese!VationWS 

ReserveResidentialO ReserveBlockO 
MOOlfyResidentialO ModiryBIockO 
cancelResidentialO CanceIBIockO 
CheckinResidenlialO CheckinBlockQ 
CheckoutResidenlialO CheckoutBlockO 

<<kernel» «kernel» 
<<web service» <<web service» 

CreditV\lS AvaiiabililyWS 

VerifyCC() CheckSingleAvaiiabililyO 
ChargeCCO CheckRangeAvailabililyO 

SetSingleAvailab~ityO 

SetRangeAvailabilityO 

Figure 4-11 Example of Web Services grouping 

«kernel» 
<<web service» 

ReportWS 

FinancialReportO 
Rese!VationReportO 
NoShowReportO 

Web Services Methods are developed according to the specified design. A Web Service 

encapsulates the implemented methods as a black box, hiding all internal activities from 

the outside world. These black boxes use the same XML/SOAP technology to interface 

with outside applications. Variability is handled by the client application according to the 



www.manaraa.com

63 

customizable workflows. During customization of client application, workflows are 

customized to determine which web service to invoke. 

4.2.6.2 Web Service Input/Output 

Since all interactions between user interfaces and Web servIceS rely on message 

communication, it is very important to specify all inputs to and outputs from each method 

of the Web service. Figure 4-12 gives sample input/output for three of the Web methods 

of the ReserveRoomWS Web service. 

Input Type Output Type 
Method 

ReselVeRoom() Name string ReselVationNumber int 
Address string ReselVationStatus string 
Tel int 
CreditCardNo int 
ExpirationDate date 
CreditType string 
RoomType string 
ArrivaIDate date 
NumbetOfDayes int 
NumbetOfOccupancy int 

ModifyRoom 0 Name string Confirmation int 
Address string string 
Tel int 
CreditCardNo int 
ExpirationDate date 
CreditType string 
RoomType string 
ArrivaIDate date 
NumbetOfDays int 
NumbetOfOccupancy int 

CancelRoom () ReselVationNumber string Confirmation string 

Figure 4-12 Sample Input/Output for ReserveRoomWS 



www.manaraa.com

64 

4.2.7 Attributes of Entity Classes 

An important part of modeling Web services is to capture the attributes of the entity 

classes, which are information intensive. The collaboration diagram on Figure 4-7 depicts 

three entity objects. The entity classes and their attributes are depicted in Figure 4-13, 

which is the information needed for completing a reservation transaction and recording 

the information in the database. 

«kernel» «kernel» «kernel» 
«entity» «entity» «entity» 

Reservation BillingRecord RoomCount 

Name: string ReservationNumber: int RoomType: string 
Address: string ChargeType: string NoOfRooms: int 
Tel: string Charge: int Date: date 
CreditCardNo: int 
ExpirationDate: date 
RoomType: string 
ArrivalDate: Date 
NumberOfDays: int 
NumberOfOccupancy: int 

Figure 4-13 Sample Entity Attributes for ReserveRoomWS 

4.2.8 Design of Component Interfaces 

In developing the software architecture, the objects from the interaction model are now 

designed as components in terms of their interfaces and interconnections using the UML 

2.0 structured class notation. Components communicate with each other through ports, 

which support provided and/or required interfaces. Figure 4-14 shows an example of how 

ports and connectors facilitate component interactions. Components are categorized 



www.manaraa.com

65 

(using UML stereotypes) to show the kernel, variant, or optional components for the 

product line. The "RoomReservation" user interface component has two required ports 

(consisting of required interfaces): RVerify and RReserve, which are used to connect it to 

the "CreditWS" and "RoomReservationWS" web service components. Figure 4-14 also 

shows the connection between two different web servIce components, 

"RoomReservation WS" and "AvailabilityWS". 

<<variant» 
«user interface» 
RoomReservation 

RVerify PVerify « kernel» 
«server» 
CreditWS 

«variant» 

RAvailabilitySet 

PAvailabilitySet 
,-----LJ------, 

« kernel» 
«server» 

AvaiiabilityWS 

Figure 4-14 Example of ports and connectors - RoomResenration Feature 



www.manaraa.com

<<variant» 
«user interface» 

Room Reservation 

RVerify 

IVerify 

IReserve 
RReserve 

PVerify ,-_____ -, 

IVerify 

PReserve 

IReserve 

«kernel» 
<<server» 
CreditWS 

.----------, 
« variant» 
«server» 

RoomReservationWS 

PAvailabilitySet 

IAvailabilitySet 

IAvailabilitySet 

PAvaiiabilitySet 
,--------lJ.-------, 

«kernel» 
<<server» 

AvailabililyWS 

Figure 4-15 Example of ports, provided, and required interfaces 

66 

Figure 4-15 defines the required and provided interfaces for the interfaces shown in 

Figure 4-14. The interfaces between user interface and web service components are 

designed using a client/server pattern such that a user interface component always 

requires a port provided by a web service component, while a web service component 

always provides a port for the user interface component. The interaction between web 

service components or between user interface components can result in a component 

having both provided and required ports. 

Figure 4-16 shows the interfaces of components using the UML static modeling notation. 

This design depicts the provided web service methods for each interface. Web service 



www.manaraa.com

67 

methods are invoked based on the customized workflows of the product line, as described 

earlier in the customizable activity diagram (Section 4-2-5). 

«interface» 
IVerify 

VerifyCC() 

«interface» 
I Reserve 

ModifyRoomO 
CancelRoomO 
ReserveRoomO 

«interface» 
IAvailabilitySet 

SetSingieAvailability() 

Figure 4-16 Example of port interfaces design 

4.3 Summary 

this chapter described the software product line modeling approach for product lines 

based on Web Service-Oriented Architecture where all functional activities are separated 

from the client application and grouped into accessible web services. The design 

architecture is based on a multiple-view model for Software Product Lines. The multiple-

view model defined the different characteristics of a software family [parnas79], 

including the commonality and variability among the members of the family 

[Clements02, Weiss99]. A multiple-view model was represented using the UML notation 

[Rumbaugh99, GomaaOO] and considered the product line from different perspectives. 

The method was described by means of a hotel software product line (SPL), which was 

used as an example of applying the software design method for software product lines 

based on web services. In the example, a hotel product line was created for a hotel chain, 

which could be customized to the needs of individual hotels. 

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

5. DEVELOPMENT APPROACHES FOR PRODUCT LINE 
CUSTOMIZATION AND SEPARATION OF CONCERNS 

5.1 Introduction 

68 

This chapter describes three different approaches to develop a Software Product Line 

Web Service-Oriented Architecture and implementation, where all service activities are 

separated from the client application and grouped into accessible web services over the 

Internet. The three development approaches are based on a client/server design pattern 

specific to Service-Oriented Architecture (SOA). Client applications contain only user 

interfaces and customizable workflows that are responsible for orchestrating web services 

invocation and user interfaces calls. Server applications contain all web services and 

database support. The three development approaches follow the same design method, 

described in chapter 4, but differ in the customization process. The three approaches are: 

• Dynamic customization of client application (DCAC). Dynamic customization is 

defined in this research as customization of application objects at system run time. 

Objects are customized using a customization file that contains the target system 

selected features and values of parameterized variables. 

• Dynamic customization of client application with separation of concerns (DCAC-

SC). The second development approach is an extension to the first method by 

incorporating the separation of optional and alternative feature source code · from 

Software Product Line Engineering Based on Web Servicesالعنوان:

Saleh, Mazen M. Aquilالمؤلف الرئيسي:

Gomaa, Hassan(Super.)مؤلفين آخرين:

2005التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

:MD 618453رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

البرمجيات، الإنترنت، تقنية المعلومات، هندسة الحاسباتمواضيع:

https://search.mandumah.com/Record/618453رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618453


www.manaraa.com

5. DEVELOPMENT APPROACHES FOR PRODUCT LINE 
CUSTOMIZATION AND SEPARATION OF CONCERNS 

5.1 Introduction 

68 

This chapter describes three different approaches to develop a Software Product Line 

Web Service-Oriented Architecture and implementation, where all service activities are 

separated from the client application and grouped into accessible web services over the 

Internet. The three development approaches are based on a client/server design pattern 

specific to Service-Oriented Architecture (SOA). Client applications contain only user 

interfaces and customizable workflows that are responsible for orchestrating web services 

invocation and user interfaces calls. Server applications contain all web services and 

database support. The three development approaches follow the same design method, 

described in chapter 4, but differ in the customization process. The three approaches are: 

• Dynamic customization of client application (DCAC). Dynamic customization is 

defined in this research as customization of application objects at system run time. 

Objects are customized using a customization file that contains the target system 

selected features and values of parameterized variables. 

• Dynamic customization of client application with separation of concerns (DCAC-

SC). The second development approach is an extension to the first method by 

incorporating the separation of optional and alternative feature source code · from 



www.manaraa.com

69 

kernel source code at product line development time, and the integration of all 

separated source code with kernel source code at customization time. 

• Static customization of client application with separation of concerns (SCAC). 

Static customization is defined in this research as customization of application 

objects at system customization time. Objects are customized by integrating 

kernel source code with only selected optional and alternative source code 

producing the exact source code needed for running a single target system. 

The three development and customization approaches are based on the Software Product 

Line Environment for Service-Oriented Architecture (SPLE-SOA) that is provided with 

this research. This chapter starts by describing the first development approach (DCAC) in 

section 5.2. Section 5.2.1 applies the DCAC approach to the hotel system case study. 

Sections 5.2.2 and 5.2.3 list the advantages and disadvantages of using the DCAC 

approach. Section 5.3 introduces the issue of separation of concerns, which is used in the 

next two development approaches (DCAC-SC and SCAC). Section 5.4 describes the 

second development approach (DCAC-SC). Section 5.4.1 applies the DCAC-SC 

approach to the hotel system case study. Section 5.4.2 lists the advantages and 

disadvantages of using the DCAC-SC approach. Section 5.5 describes the third 

development approach (SCAC). Section 5.5.1 applies the SCAC approach to the hotel 

system case study. Sections 5.5.2 and 5.5.3 list the advantages and disadvantages of using 

the SCAC approach. Section 5.6 compares the three development approaches. Section 5.7 

describes the usage of each approach. Section 5.8 summarizes this chapter. 



www.manaraa.com

70 

5.2 Dynamic cnstomization of client application 

The first development approach is based on the dynamic customization of the client 

application, where objects are customized at system run time using a customization file 

that contains the target system selected features and values of parameterized variables. 

Figure 5-1 shows a conceptual overview of the approach. It consists of the customizable 

SPL system architecture and the SPL environment. 

The customizable SPL system architecture in Figure 5-1 is based on the client/server 

design pattern, where the client application contains only user interface objects and a 

customizer object, and the server application contain all web services and database 

support. 



www.manaraa.com

Customizable SPL system architecture 

Software produd line 
environment 

SPL engineering 

Feature 
dependency tree 

SPL 

- Analysis mode 
- Design model 
- Componenls 

Application Engineering 

Parameterized 
variables 

Feature selection G 

& 
Values of parameterized 

variables 

Figure 5-1 Conceptual overview of DCAC approach 

71 

The software product line environment in Figure 5-1 shows a conceptual overview of the 

approach from the SPL engineering phase to the application engineering phase (SPL 

customization). The overall life cycle IS based on the PLUS method 

[GomaaOO,Gomaa04], which includes the following steps: 



www.manaraa.com

• SPL Engineering: 

Analyze SPL customizable system 

Design SPL customizable system 

Implement SPL customizable system 

• Application Engineering (SPL customization): 

72 

Use the feature selector to select desired features and apply consistency 

checking rules, described in Chapter 6. 

Store target system customization information in the customization file 

using the customization file generator. The customizable application will 

read this file to customize user interface objects and their workflows, 

described in detail in the Dynamic Client Application Customization 

Pattern in Figure 5-2. 

• Deploy the customizable SPL system and related web services. 

The customizable SPL system uses the customization file produced in the application 

engineering phase to customize a target system at run time. The customizer object (Fig. 

5.1) reads the customization file and stores all customization information in the 

customizer object's local storage (arrays, data table, etc.) to be used for customizing the 

client application user interfaces and their workflows. User interfaces are customized by 

enabling or disabling buttons, and by setting appropriate display variables. Workflows 

are customized by tailoring decisions on which user interface to call or which web 



www.manaraa.com

73 

servIce to invoke. This approach is described In the Dynamic Client Application 

Customization (DCAC) Pattern in Figure 5-2. 

The activities specific to this research relate to each phase in Figure 5-1 and are as 

follow: 

• SPL engineering phase: 

SPL feature editor: Allows users to create a feature dependency tree and 

define feature relations, create parameterized variables for each feature, 

and link each feature to related specifications, designs, test procedures, 

and implementation components. 

• Application engineering phase: 

Feature selector: Allows users to select desired features, and to enter 

value of parameterized variables. 

Consistency checker: This component is part of the feature selector. It 

serves as a check for selecting features. When a feature is selected, the 

consistency checker is invoked to verify selection by consulting the 

feature dependency model for inconsistent feature selection. 

Customization file generator: This component is responsible for 

generating a customization file that is required for the dynamic 

customization of client applications at system run time. 



www.manaraa.com

74 

The DCAC approach is described next as an architecture pattern. It provides a detailed 

description of the development approach, which can be applied to any SPL application 

based on web services. 



www.manaraa.com

Dynamic Client Application Customization Pattern 
Intent 
Provide a consistent reusable solution to the implementation architecture of a 
client/server software product line using web services with provision for dynamic 
client application customization. 

Motivation 
The goal Of developing software product lines is to promote flexible software 
reuse. With the introduction of web services to SPLs, there is a need for 
developing a systematic approach that enables developers to implement a 
customizable system that can be dynamically customized into many single target 
systems without the need to modify any of the source code. Using the feature 
selector component, user interfaces and workflows of SPL systems can be 
automatically adjusted at run time to serve a single target system. 

Solution 
The idea behind the (DCAC) pattern is the development of dynamic client 
application that can be customized at system run time. 

The DCAC Pattern has two main steps: 
1. SPL Customization 
2. Target application interaction 

Step 1: SPL Customization 
This step involves selecting desired optional and alternative features to be 
included in the target system. The feature selector component provides a facility 
to make feature selection from a SPL model and run consistency checks to verify 
selections. Once features are selected, selection information will be stored in the 
customization file by the customization file generator. The dynamic client 
application is customized by reading the customization file at run time. 

Components description: 
• Feature selector: Allows users to selects desired features, and allows entry 

for parameterized variable values. 
• Consistency checker: Verifies feature selection. 
• Customization file generator: Generates a customization file for each 

target system. 

75 



www.manaraa.com

(DCAC pattern - Continue) 

• SPL model database: Contains feature tree, feature relations, analysis 
model, design .mode~ components, and parameterized variables. 

• Customization file: Contains feature name, feature selection status 
(true/false) and values of parameterized variables. 

Dynamics 
The following scenario depicts the customization process of a target system: 

• Application engineer selects desired features for a target system using 
feature selector component. 

• Consistency checker is invoked to verify selection by consulting the SPL 
model. 

• Generate a customization file, which will be used by the client application 
for dynamic customization at run time. 

Feature editor 

Customization file 
generator 

Vetlfy 

IlMlke 

Customization file 
generator 

Generate ... 
1 .. • Customization 

File 

76 



www.manaraa.com

(DCAC pattern - Continue) 

Step 2: Target application interaction 
The Dynamic Client Application Customization (DCAC) Pattern divides an 
interactive application into three components: 

• Customizer component 
• User interface component 
• Web Service component 

Customizer component contains allcustomization information for a single target 
system. At run time, the customizer object reads the customization file and stores 
all customization information in the customizer object's local storage (arrays, data 
table, etc.) to be used for customizing the client application user interfaces and 
their workflows. Customization information consists of enabled or disabled 
features and parameterized variables. 

User interface component is responsible for accepting input from users and 
allowing invocation of possible service requests. It involves the sequencing of 
web services invocation and handling of message communication based on the 
customizable workflow. It is also responsible for displaying results to users 
coming from the web service component. 

Web Service component is a collection of functional methods that are packaged as 
a single unit and published in the Internet, Intranet, or Extranet in a private or 
public UDDI for use by other software programs, in this case the user interface 
component. 

77 



www.manaraa.com

78 

(DCAC pattern - Continue) 

Class Collaboration Class Collaboration 
Customizer Web service 
Responsibility - Customization 

- Reads customization information file 
Responsibility - User interface 

- Process a service request based on 
from the customization file I provided input 
database - Returns results of processed 

requests 

Class Collaboration 
User interface 
Responsibility - Customizer 

- Calls customizer class to: - Web service 

- Enable or disable user interface 
components based on selected 
features 

- Customize user interface 
- Customize workflow by setting up 

appropriate method caRs and 
calls to other user interfaces 
based on selected features 

- Invoke and pass parameters to 
appropriate web service(s) 

- Receives results from web 
service(s) 

- Display information to the user 



www.manaraa.com

(DCAC pattern - Continue) 
Dynamics 
Once the target application features are selected in the SPL customization step, the 
application will be ready for execution. The application interaction step describes 
the two processes that occur at execution time: dynamic customization and object 
interactions. 

Step 2-1: Shows how the client application is dynamically customized at run time. 
• Starts main client application program. 
• Customizer object is invoked at main client application program startup. 
• Customizer object reads customization information once from the 

customization file that is generated by the customization file generator. 
• Customization information can be read by all user interface objects 

through the customizer object. 

I Main client I 
application Program 

Start 

I Customizer I 
Invoke I 

1-------+1,--1-

-

Request cusromization info 

Provide customizalion info 

( Feature names, 
Features selection status, 
Features Variables ) 

Customizatio:1 
File j 

I 
Main client 1 Invoke ..... 1 1 Read..... "-- ~ 

Customizer I-:------:--l application Program 11 1 1 11 1 Customization 
'-----------' File 

Feature selector & 
Customization file 

generator 

79 



www.manaraa.com

(DCAC. pattern - Continue) 

Step 2-2: Shows how user interface objects interact with service requests using 
the DCAC pattern: 

Customization of user interface at run time 
• User invokes a user interface. 
• User interface requests customization information from customizer object. 
• User interface reads the customization information to: 

Customize user interface components 
Defining appropriate calls to web services based on selected 
features. 
Define appropriate calls to other user interface objects. 
Update parameterized variables. 

Customization is based on feature selection information stored in the 
customization file. 

User interface and web service interaction 
• User requests an activity by entering input data and clicking a button. 
• User interface object passes the activity request and input data to a web 

service method(s). 
• Web service processes the request and passes the results to the user 

interface object. A web service may also request services from other web 
services. 

• User interface object displays results received from web service. 

80 



www.manaraa.com

(DCAC pattern - Continue) 

Customization of user 
interface at run time 

SlarllCrea\e 

User interface and web 
service in1eraction 

User Input 

customiZation info 

customiZalion info 

Customize user Interface and 
workflow, 
Update parameterized variables, 

Display result 

Customizer I 
1 , 

Read customization info 
1 .. * 

User interface I a 1 .. * 

t I i I 
Call other UI Update 

Request Service 

Invoke ~ 

1 .. * 

Web Service 

Process 
event 

C3l1other 
web 

services 

I' Web seonce ~ 
LJ 

Invoke other web service 

Figure 5-2 Dynamic Customization Workflows (DCAq Pattern 

81 



www.manaraa.com

82 

5.2.1 Development of DCAC pattern 

This section describes the development of the DCAC pattern. Two examples from the 

hotel software product line will be presented to illustrate this development: 

• Main Reservation User Interface. 

• Reserve Room User Interface. 

The first example (see section 4.2.5) shows how alternatives and optional features are 

treated in the source code, while the second example shows how a service request is 

performed using web services. Both examples will explain the transition of design into 

implementation. 

[feature=RoomReservation 
AND RoomReservation is 

selected] 

Invoke Room 
Reservation UI 

Customize 

[feature=ResidentiaIReservation 
ND ResidentialReservation is 

selected} 

Invoke 
Residential 

Reservation UI 

[feature=BlockReservation 
AND BlockReservation is 

selected] 

Invoke Block 
Reservation UI 

Figure 5-3 Activity Diagram - Main Resenration UI 



www.manaraa.com

83 

Figure 5-3 shows a customizable activity diagram for the "MainReservation" user 

interface. This diagram shows "ResidentiaIReservation" UI and "RoomReservation" VI 

as mutually exclusive alternatives where only one of them can be invoked by clicking the 

single reservation button of "MainReservation" user interface (Figure 5,..4). 

"BlockReservation" UI, on the other hand, belongs to an optional feature. It will be either 

enabled or disabled based on whether the BlockReservation feature is selected by the 

user. 

The customizable SPL application uses the customization qle generated in the application 

engineering phase to customize a target system at run time (step 1 ofDCAC pattern). The 

customizer object reads the customization file once and stores all customization 

information in the customizer object's local storage (arrays, data table, etc.) to be used for 

customizing the client application user interfaces and their workflows. The 

MainReservation UI is customized by reading the feature selection and the value of 

parameterized variables from the customizer object to enable or disable buttons and set 

appropriate display variables. Its workflow is customized by setting features to true or 

false and applying feature condition settings to user interface calls and web service 

invocations (step 2 ofDCAC pattern). The following explains the customizationin more 

detail. 



www.manaraa.com

Public class MainReservation 
{ 

public MainReservationO 
{ 

booIlOOflfies, residRes, bIod<Res ; 

roornRes = CstfeatureSelection(RoomRese!vation) ; 
residRes = CstfeatureSelection(ResidetialRl!SeIVation) ; 
bIockRes = CstfeatureSelection(8locl<Rl!SeIVation) ; 

Public class Custcmizer 
{ 

public CusIoIrizerO 
{ 

public boolean fealureSeledion( fealuteName) 
{ 

Public string varSeledion( VariableName ) 

84 

if (bloct<Res = "Y") { 

nC~b~kr~n~ :~:;~~~~+l!!~~~!!I!~~~~I!~I!!!!!~ bloct<Res_button.visible = true; 

MainResUlTitIe.Text = Cs.varSelection(MainResTitIe) ; 
} 

private void singeIRes_butlon_clickQ 
{ 

if (roomRes = 'Vi 
/I diplay RoornReservalion UI 

else l{residRes == "Y") 
/I display ResidentialResetVation lJI 

private void bIockRes_buIlon_clickQ 
{ 

/I display BlockReservation UI 

Figure 5-4 Customization phase - Main Reservation VI 

Figure 5-4 shows an actual implementation of the activity diagram in Figure 5-3. It shows 

how the MainReservation VI object can be customized at run time and how it interacts 

after the dynamic customization. 



www.manaraa.com

85 

Customization of client application at run time: 

• Object MainReservation is customized by reading the feature selections stored in 

the customizer object and stores them in local variables, where they will be used 

throughout the MainReservation object. Local feature variables roomRes, 

residRes, and blockRes store the RoomReservation, ResidentialReservation, and 

BlockReservation feature decisions respectively and are set to "Y" or "N', 

depending on whether the feature is selected or not. 

• During the customization process, optional button "Block Reservation" is created 

if blockRes is equal to "Y" and ignored otherwise. 

if (blockRes = = '-T'J 
/ / Create block reservation button 
blockRes _button. visible = true; 

• During the customization process, the parameterized variable MainResTitle is 

read from the customizer object to set the appropriate header title of the 

"MainReservation" user interface. 

MainResUITitle. Text = Cst. varSelection(MainResTitle); 



www.manaraa.com

86 

User interface object interaction: 

After the dynamic customization process is complete, the MainReservation user interface 

is ready to accept user input. 

• If Single Reservation button is invoked, either "ResidentiaIReservation" VI or 

"RoomReservation" VI will be called, depending on whether RoomReservation 

feature or ResidentialReservation feature is selected. 

if (roomRes = = "Y'j 
II display Room Reservation UI 

else if(residRes = = "Y'j 
II display ResidentialReservation UI 

• If Block Reservation button is enabled and invoked, "BlockReservation" VI will 

be called. 

private void block Res button clickO - -
{ 

II display BlockReservation UI 
} 

• Since "MainReservation" VI has no service request to process, there will be no 

web services involved at this user interface. 

The second example shows how a service request is processed in the "RoomReservation" 

VI. Once the "RoomReservation" VI is invoked, it initiates the dynamic customization 

process, described in the previous example. The user interface is now ready to accept user 

input and service requests. For the illustration, make single reservation service request is 

explored. 



www.manaraa.com

. 

Customize 

Accept user 
request 

~ [exit]_ 
<»----'--~~ 

[reserve room selected] 

Call 
RoomReservationWS.R 

eserveRoom() 

o [not available] 

[available] 1 
,-----''-----... 

Display Display Not 
Confinnation info available message 

I I 
Figure 5-5 Activity Diagram - RoomReservation UI 

87 

Figure 5-5 is an activity diagram showing the workflow of processing a single reservation 

(Reserve button clicked). It has the following activities: 

• Customize "RoomReservation" UI 

• Accept user input that is required to make a single reservation, such as name, 

address, duration, and credit card, etc. 

• Accept user request to process a single reservation. 



www.manaraa.com

/ . ~ -

88 

• RoomReservationWS will be invoked. Web service method ReserveRoomO will 

process the request. 

• Web service method ReserveRoomO will invoke AvailabilityWS web service and 

call SetSingleAvailabilityO. method. This method will . attempt to update the room 

availability list in the database. 

• Results will be returned to "RoomReservation" UI. 

• A conftrmation or a decline message will be displayed in the "RoomReservation" 

UI. 

Figure 5-6 is a collaboration diagram for making a single reservation (reserve button 

clicked). It shows all required objects and their interaction. Since "RoomReservation" UI 

object has no decision related to alternative or optional feature selection, the customizer 
/1 

/ 

"""!~0bject is not shown in the collaboration diagram. Making single room reservation 
\ 
\ 

collaboration diagram is implemented in figure 5-7. 



www.manaraa.com

1: provide guest info 

--7 «wuiant» 
«user interface» 

-RoomRuervatjon 

«wnant» 
<~ service» 

BooroReseya!ionlfy'S 

4: confirmed i J, 3: check and 
availability update availability 

«kernel» 
<<weD ter'rice» 

:AvailabiljtvWS 

Figure 5-6 Collaboration Diagram - RoomReservation 

Public cIaso Roan_ 
{ 

public RoomR~) 
{ 

} 

n Disploy ALL GUI comp""""," 
/I 1ieIdo: re.YIIIIonNo, 
II Name,.-.-, _Dale, deys, CC 
/I Meseogefleld 

Awlabilly WS 

_oomWS 

89 

~ 

f 
.Il booI...-y; 

inI .... No ; I_-+_.-J~ _._oon..ws .... ~MW_.R--'-O; 

A.-yconA-,w5 IN ~.-A-,con.AYIIIIIbiIIyW5O; 

...- ~ ..... R __ oom(N ... e,Address. _,..,., CC); 

if(_o!="") 
rM«VIIIOnNo.TIIId ~ ...... o ; 

etse 
M_eFioId.TeJd ~ "R __ on tid ,_abl.' , 

Figure 5-7 Implementation - RoomReservation UI 



www.manaraa.com

90 

Figure 5-7 is an implementation sample of the "RoomReservation" VI object of the 

collaboration diagram in .Figure 5-6. The following will explain the process: 

• RoomReservation user interface object is responsible for all communication with 

RoomReservation WS methods. It passes input parameters entered in the graphical 

user interface and calls ReserveRoom WS web service invoking ReserveRoomO 

method. 

ReserveCon.ReserveRoomWS res = new ReserveCon.ReserveRoomeWSO; 
resNo = res.ReserveRoom(Name, Address, arrival Date, days, CC); 

• ReserveRoomO web service method of the ReserveRoom WS web servIce 

processes the entire service request. A web service may call one or more web 

services methods. In this case, SetSingleA vailabilityO method is invoked from the 

A vailabilityWS web service. 

• ReserveRoomO method returns a numeric reservation number, which is stored in 

the local variable resNO of the RoomReservation user interface and the database. 

• RoomReservation user interface displays results received. 

• Either reservation number or a decline message is displayed to the user. 



www.manaraa.com

91 

5.2.2 Advantages ofDCAC approach: 

• Client application is involved with workflows only. All service requests are 

processed using web services. This makes it easier to develop a client application 

quickly and construct it for dynamic customization at run time. Also, this ·makes it 

easier to develop web services individually and incorporate them in the SPL 

Service-Oriented application. 

• No source code extraction or update of source code to fit target systems. The 

customizable SPL application is created once with all possible features 

incorporated in the interactive application. Target systems are dynamically 

customized at run time by reading the customization file that is generated during 

the application engineering phase using the feature selector component. 

• No recompilation of target system applications. The customizable SPL application 

is compiled only once to generate an executable SPL application that can be 

customized dynamically at run time. 

• Since Web Services process all service requests, it is easier to test each request 

separately using the provided standard interface of web services. 

• Software reuse: Web services are developed once and can be reused by target 

applications. 



www.manaraa.com

92 

5.2.3 Disadvantages of DCAC approach: 

• Source code overhead: All optional and alternative source code is interwoven . 

with kernel source code in the interactive client application. Selected optional and 

alternative source code blocks are invoked at run time using a customization file 

that includes feature selection. 

• No fixed workflows. Workflows are driven by feature selection, which adds an 

extra activity to · the interactive application by applying decisions at run time to 

which optional or alternative web service to call, or what ill components to 

display. 

• There is no separation of concerns between kernel source code and optional and 

alternative source code. 



www.manaraa.com

5.3 Introduction to the customization approaches based on 
separation of concerns 

93 

The second and third development approaches apply the Aspect-Oriented programming 

(AOP) and framing technology (FT) concepts, described in Chapter 2, to separate the 

optional and alternative source code from kernel source code, which is referred to as 

separation of concerns. The concept of AOP and FT will be tailored to accommodate the 

capturing of variability based on feature grouping of related optional and alternative 

source code in a variable source code file that is used for the purpose of customization 

and integration with consistency checking support. 

The second and third development approaches apply the AOP concept of separation of 

concerns and code weaving. Separation of concerns is used to separate variable source 

code form kernel source code in a variable source code file. In AOP for product lines 

[Leasint04, Loughran04a, Anastasopoulos04], the aspect file is used to store all 

required source code needed for a specific target application with no consideration to 

variable source code. Therefore, for every target application an aspect file has to be 

manually created to satisfy its requirements. In this research, the variable source code file 

stores all variable source code to be integrated (weaved) according to the two proposed 

automatic customization and integration processes with no manual modification to the 

variable source code file when deriving a target application. A detailed comparison of 

AOP and this research was described earlier in section 3.8.2. 



www.manaraa.com

94 

The next two development approaches apply the concept of FT by grouping feature 

related variable source code in different files, similar to frames, which are composed into 

one variable source code file. But unlike frames, the two development approaches in this 

research provide a systematic method for relating source code to features for the purpose 

of automating customization and integration of SPL applications with consistency 

checking support to verify feature selection. A detailed comparison of FT and this 

research was described earlier in section 3.8.2. 

The second development approach applies separation of concerns for applications that are 

customized dynamically at run . time. Optional and alternative source code is separated 

from kernel source code in a variable source code file. Separated source code is then 

integrated with kernel source code in the code weaving process to generate the complete 

SPL application source code. Integrated source code is compiled ,once and becomes ready 

for execution. Target applications are then customized using the feature selection and 

consistency checking process to generate a customization file that stores feature selection 

and parameterized variables. The executable SPL application reads this file to apply 

customization of client applications at run time. 

The third development approach applies separation of concerns for applications that are 

customized during source code integration time. Optional and alternative source code is 

separated from kernel source code in a variable source code file. But unlike the second 

development approach where feature selection is performed after source code integration 



www.manaraa.com

95 

is complete, the feature selection process in the third development approach is performed 

before the source code is integrated. The code weaver engine reads feature selection and 

integrates only selected optional and alternative feature source code with kernel source 

code. The integrated source code is compiled and becomes a customized executable 

target application. 

5.4 Development of dynamic customization of client application 
with separation of concerns 
The second development approach is an extension to the first method (DCAC), described 

in sections 5.2 to include the separation of concerns. It is based on the dynamic 

customization of client applications, where objects are customized at system run time. 

However, this method provides the separation of optional and alternative source code 

from kernel source code into a variable source code file. Figure 5-8 shows the overall 

method of DCAC-SC from the SPL engineering phase to the application engineering 

phase (SPL customization), which is the same as the DCAC method. It also depicts the 

separation of concerns that is added to the DCAC method. It shows the needed facilities 

to create the separation of concerns, feature selection, consistency checking, and 

integration of kernel source code with optional and alternative source code. The result of 

the integration process is a combined set of source code for the entire software product 

line including all optional and alternative source code. The source code integration 

process and compilation are performed only once to generate an executable SPL system. 

Target systems will rely on the dynamic client application customization at system run 

time, which is identical to that produced by the first approach (DCAC). 



www.manaraa.com

96 

Similar to DCAC approach, the customizable SPL system uses the generated 

customization file produced in the application engineering phase to customize a target 

system at run time. The customizer object reads the generated customization file and 

stores all customization information in the customizer object's local storage (arrays, data 

table, etc.) to be used for customizing the client application user interfaces and their 

workflows. User interfaces are customized by enabling or disabling buttons, and by 

setting appropriate display variables. Workflows are customized by customizing 

decisions to which user interface to call or which web service to invoke. 

Since this approach IS based on SPL Service-Oriented Architecture, separation of 

concerns focuses on: 

• Separation of optional and alternative service calls. 

• Separation of optional and alternative calls to user interfaces. 

• Separation of optional and alternative user interface components, such as buttons 

headings, and images. 

This approach is described in the Dynamic Client Application Customization with 

Separation of Concerns (DCAC-SC) Pattern in Figure 5-9. 



www.manaraa.com

Customizable SPL system architecture 

Software product line 
environment 

SPL engineering 

Feature 
dependency tree 

SPL 
model 

Anlnli,.,,.tit,n Engineering 

Parameterized 
variables 

Values of parameterized 
variables 

Figure 5-8 Conceptual overview of DCAC-SC approach 

97 



www.manaraa.com

Dynamic Client Application Customization with Separation of Concerns Pattern 

Intent 
Provide a consistent reusable solution to the implementation architecture of a 
software product line using web services with provision for dynamic client 
application customization and separation concerns. 

Motivation 
This pattern is an extension to the DCAC pattern, which does not address the issue 
of separation of concerns. This issue needs to be introduced for · the purpose of 
reducing complexity of developing SPL applications, maintenance, and system 
evolution. 

Solution 
The idea behind the (DCAC-SC) pattern is the development of dynamic client 
application that can be customized at system run time by separation of concerns 
between kernel source code and optional and alternative source code. 

The DCAC-SC Pattern has four main steps: 
1. Separation of concerns between kernel and variable source code 
2. Code weaving 
3. SPL Customization ( the same as the DCAC pattern) 
4. Target application interaction (the same as the DCAC pattern) 

The above steps have to be performed in sequence. First, separation of concerns 
and code weaving have to be performed. The SPL application can then be 
customized by selecting desired features. Target applications are compiled to 
produce an executable SPL application. 

Step 1: Separation of concerns between kernel and variable source code: 

This step involves separating kernel source code from optional and alternative 
source code into a variable source code file where separated source code is 
grouped by features. Optional and alternative source code is identified · by unique 
insertion point names in the variable source code file. Insertion points have to be 
also included in the kernel source code to specify the location where optional and 
alternative source code will be inserted. 

98 



www.manaraa.com

(DCAC-SC pattern - Continue) 
Dynamics 
The following scenario depicts the dynamic behavior of separation of concerns: 

• Create application classes with kernel source code. 
• Create a variable source code file that contains source code related to 

alternative and optional features. 
• Add insertion points to kernel source code where optional and alternative 

source code from the variable source code file will be inserted. 

Kernel Source Code Variable source code file 
Class ... .. .. () 
{ 

$FEATURE[AJ II Optional Feature 

V $START insl 

$START insl/ 

I I Code 
$END insl 

. 

V 
$START ins2 

. I I Code 

$START inS2/ 

$END ins2 

$ENDFEATURE [A} 

$FEATUREINTERACTION[X,Y] 

V $START ins3 

$START ins3 ~ if(Feature-X == true) II Alternative Feature 
II Code 

else if(Feature-Y == true)11 Alternative Feature 
II Code 

} 
$END ins3 

$ENDFEATUREINTERACTION[X, Y] 

99 



www.manaraa.com

(DCAC-SC pattern - Continue) 

Language description: 
• Kernel source code 

$START «insertion name» : Specifies insertion location In 

kernel source code 

• Variable source code file 
$START «insertion name»: Identifies optional or alternative 
source code that needs to be inserted at the location specified in the 
kernel source code. 

$END «insertion name»: Specifies the end of insertion code. 

FEATURE [«feature name»]: Groups optional and alternative 
source code in a feature block. Feature blocks are integrated with 
kernel source code during the code weaving process based on 
insertion names. 

FEATUREINTERACTION[«feature 1, feature 2, .. . »]: Groups 
related features source code that requires decisions on which 
source code to execute at run time. If-then-else statement is used 
within the insertion name of the feature interaction block with 
feature identifiers in the decision statement to be integrated as-is in 
the kernel source code based on the language used to develop the 
SPL application. At run time, only one of the decisions will be 
executed based on feature selection during SPL customization. 

ENDFEATUREINTERACTION []: Specifies the end of feature 
interaction source code. 

100 



www.manaraa.com

(DCAC-SC pattern - Continue) 

Step 2: Code weaving 
This step combines kernel source code with optional and alternative source code 
from the variable source code file. This process is based on the Code Weaver 
component, which reads the variable source code file and inserts all source code 
blocks from that file into the kernel source code at the specified insertion 
locations. 

Dynamics 
The following scenario depicts the dynamic behavior of code weaving process: 

• Run the code weaver component. 
• Read optional and alternative source code from the variable source code 

file and integrate it into kernel classes at the specified insertion point 
locations. 

• Compile integrated source code to generate an executable dynamic SPL 
application. 

Kernel source code 

Class A ClassS ClassC 

SPLclient 
application 

source code 

Compiler 

Variable source code 
I I 

Variable 
source 

code file 

Executable 
~------------~~ code 

101 



www.manaraa.com

(DCAC-SC pattern - Continue) 

The following diagram shows the complete process of separation ofconcems and 
source code integration: 

Create Kemel code in classes 

Add Insertion points where all D 

code from the feature file will be ----------------- --
inserted 

Create a variable source code 
file that contains code related 10 
altemative and optional features 

Read variable source code file 
and integrate all source code 
inlo kernel classes at the 
specified insertion locations 

Compile the integrated source 
code 10 generate an executable 
dynamic SPL system 

Develop client 
application classes 

Add insertion points in 
kernel classes 

---{= ~ , code 

, 

Create variable source ___ ______ ~ 
code file 

variable 
source 

codelile 

VVeave code 

Compile 

Run executable SPL 
application 

.......... 
.. ......... 

Integrated 
(_________ source 

code 

......... 
" 

"0" 
Executable 

------- -- code 

102 



www.manaraa.com

(DCAC-SC pattern - Continue) 

Step 3: SPL Customization 
This step is identical to the SPL customization step in the DCAC pattern. It 
involves selecting desired optional and alternative features to be included in the 
target application. The feature selector component provides a facility to make 
feature selection from a SPL model and run consistency checks to verify 
selections. Once features are selected, selection information will be stored in the 
customization file using the customization file generator. The dynamic client 
application is customized by reading the generated customization file at run time. 
This step is described in full in step 1 of the DCAC pattern. 

Step 4: Target application interaction 
This step is identical to the target application interaction step in the DCAC 
pattern. This step follows the SPL customization step. Once the targ~ application 
features are selected, the application will be ready for execution. This step 
describes how the client application is customized dynamically at run time, and 
how user interface objects interact with service requests. This step is described in 
full in step 2 of the DCAC pattern. 

Figure 5-9 Dynamic Client Application Customization with Separation of Concerns Pattern 

5.4.1 Development of DCAC-SC pattern 

103 

This section describes the implementation of the DCAC-SC pattern. The 

"MainReservation" VI from the hotel product line will be used for this illustration. The 

ideas presented in this example can be applied to all user interfaces. The example will 

illustrate the approach of separating optional and alternative source code from kernel 

source code into a variable source code file. It will also explain the integration of variable 

source code with kernel code to produce a dynamically customizable SPL· application. 

The separation and integration of source code is based on the DCAC-SC pattern. 



www.manaraa.com

[feature=RoomReservation 
AND RoomReservation is 

selected] 

Invoke Room 
Reservation UI 

>------J(. 

[feature=ResidentiaIReservation 
D ResidentialReseJVation is 

selected) 

Invoke 
Residential 

Reservation UI 

[feature=BlockReservation 
AND BIockReservation is 

selected) 

Invoke Block 
Reservation UI 

Figure 5-10 Activity Diagram - Main Resen'ation UI 

104 

Figure 5-10 shows the same customizable activity diagram used to illustrate the 

implementation of method 1 (DCAC). However, this example includes separation of 

concerns, which is not addressed in the previous method. The customizable activity 

diagram represents the "MainReservation" user interface. It shows 

"ResidentiaIReservation" VI and "RoomReservation" VI as mutually exclusive 

alternatives where only one of them can be invoked by clicking the single reservation 

button of "MainReservation" user interface (Figure 5-11). "BlockReservation" VI, on the 

other hand, belongs to an optional feature. It will be either enabled or disabled based on 

whether BlockReservation feature is selected by the user. These decisions are set during 

applicati(>n run time, the same as for the DCAC pattern. 



www.manaraa.com

105 

All source code in the variable source code file will be extracted and integrated with the 

kernel source code. The result of the integration process is a SPL system that is identical 

to method 1 (DCAC). 

Figure 5-11 MainReservation graphical user interface 

Figure 5-11 is the graphical user interface for "MainReservation" UI class. It shows two 

event buttons: Single reservation and Block Reservation. If single reservation button is 

clicked, either "RoomReservation" UI or "ResidentialReservation" UI will be invoked. 

Also BlockReservation button will either be visible or invisible based on feature selection 

during the SPL customization process. 



www.manaraa.com

Public class MainReservation 
{ 

public MainReserwtionO 
{ 

} 

/I Related features: RoomReservation 
/I RedienlialReservation 
/I BIockReservation 

boo! roomRes, residRes, bIockRes ; 

Customizer Cst = new CustomizerO ; 

roomRes = CstfeatureSelection{RoomReservation) ; 
residRes = Cst.featureSelection(ResidetiaiReservation) ; 
bIockRes = Cst featureSelection(BlockReservation) ; 

/I Display ALl GUI components 

MainResUITiUe. Text = Cs.varSelection(MainResTitIe); 

$START BlockResButton 

private void singelRes_button_click(} 
{ 

$START RoomResidenlialUl 

private void blockRes_button_clickO 
{ 

$START BlockResUI 

PubUc class Customizer 
{ 

public CustomizerO 
{ 

public boolean featureSelection( featureName) 
{ 

/II nsen your aspecl code here 

$START RoomResidenlialUl 

if( roomRes == "Vi 
{ 

} 

/I Display RoomReservationUi 
RoomReservationl rc = ne\N RoomReservationlO ; 
rc.ShowO; 

else if( residRes = "Y") 

{ 1/ Displa ResidentialReserwtionUi 
ResideJalReservationl rs = new ResidenlialReserwlioniO ; 
rs.ShowO; 

bIockReservalion br = ne\N blockReservationO ; 
br.Show() ; 

$ENDFEATURE[BlockReservationl 

Figure 5-12 Implementation - Main Reservation UI 

106 

Figure 5-12 shows both the kernel source code of the "MainReservation" VI and variable 

source code in the variable source code file. Insertion points are the key for integrating 



www.manaraa.com

107 

variable source code with kernel source code. The code weaver engine is responsible for 

this integration. The code weaver reads all application class files and locates insertion 

points. It then reads the variable source code file and adds variable source code at the 

location of the insertion points based on matched feature names. The key command 

$START is followed by an insertion name, which is used for the integration process. 

Both kernel source code and variable source code in the variable source code file contain 

the same insertion point name. Insertion point in the kernel source code identifies the 

location of the insertion, and insertion name in the variable source code file identifies 

which variable source code is to be inserted. 

Based on the DCAC-SC approach, all optional and alternative feature source code in the 

variable source code file is inserted in the kernel source code at the location of the 

insertion point~ customization is done at run time. For example, the insertion point 

$START BlockResButton refers to the optional feature "BlockReservation" in the variable 

source code file. The variable source code will be inserted in the kernel 

"MainReservation" ill class at the place of the insertion point: $START BlockResButton. 

At run time, this button will be either visible or invisible based on feature selection. 



www.manaraa.com

Public class MainReservation 
{ 

public MainReservation() 
{ 

/I Related features : RoomReservation 
/I RedientialReservation 
/I BlockReservalion 

/I Display ALL GUI components 

Customizer Cst = new CustomizerO ; 

bool roomRes, residRes, bIockRes ; 

roomRes = CstfeatureSelection(RoomReservation) ; 
residRes = Cst. featureSelection(ResidetiaIReservation) ; 
blockRes = Cst.featureSelection(BlockReservation) ; 

I/START BlockResButton 
if (biockRes = "V'1 

II Create block reservation button 
bIockRes_button.visibie = false; 

Variable source code inserted at 
~------t---I $START BlockResButton 

insertion point 

MainResUITitle.Text = Cs.varSeleclion(MainResTrUe) ; 

private void singe/Res_button _ click() 
{ 

/I $ST ART RoomResidentialUI 
If( roomRes =="Y") 
{ 

} 

II Display RoomReservationUI 
RoomReservatlonl re = new RoomReservatlonl() ; 
re.Show() ; 

else If( resldRes == "V'1 
( 

-

II DIsplay ResiclentialReservationUI 
ResldimtlalReservationl rs = new ResldentialReservatlonl() ; 

} rs.Show(); _ 

private void bIockRes _ button_click() 
{ 

Variable source code inserted at 
1-4-+--- 1 $START RoomResidentialUI 

insertion point 

/I $ST ART BlockResUI 
If (blockRes == ''Y'' 
{ 

-

bIockReservation br = new bIockReservatlonO ; 
br.Sh~; 

-

Variable sOurce code inserted at 
f4-+--~ $START BlockResUl 

insertion point 

Figure 5-13 Implementation - Main Reservation UI 

108 



www.manaraa.com

109 

Figure 5-13 shows the "MainReservation" VI class after the integration process. In this 

class, the BlockReservation feature and the RoomReservation feature are inserted in the 

kernel source code. Inserted blocks are: 

• Insertion point $START BlockResButton in the kernel source code is replaced 

with the following source code from the variable source code file: 

II START BlockResButton 
if (blockRes == "Y'j 

II Create block reservation button 
blockRes _button. visible = true,' 

• Insertion point $START RoomResidentialVI in the kernel source code is 

replaced with the following source code from the variable source code file: 

II START RoomResidentialUI 
if( roomRes == "Y'j 
{ 

} 

I I Display RoomReservationUI 
RoomReservationl rc = new RoomReservationlO " 
rc.ShowO; 

else if( residRes = = "Y'j 
{ 

} 

I I Display ResidentialReservationUI 
ResidentialReservationl rs = new ResidentialReservationlO ; 
rs.ShowO; 

• Insertion point $START BlockResVI in the kernel source code is replaced 

with the following source code from the variable source code file: 

II START BlockResUI 
if (blockRes == "Y'j 
{ 

} 

block Reservation br = new blockReservationO ; 
br.ShowO; 



www.manaraa.com

110 

Figure 5-14 shows the insertion points needed in the "Mainreservation" VI class. This 

figure has to he added to the modeling of SPL Service-Oriented Architecture, discussed 

in chapter 4. Insertion points are depicted from the activity diagram, where feature 

conditions are stated to show the possible workflows for a single target application. The 

activity diagram in Figure 5-10 shows three different decisions that need to be set when 

customizing the target system workflow. These decisions are presented as feature 

conditions, which are: 

• RoomReservation alternative feature condition 

• ResidentialReservation alternative feature condition 

• BlockReservation optional feature condition 

Feature Name Feature Type Class Name Insertion Point Name 
BlockReservation Optional MainReservation BlockResButton 

BlockResUI 

RoomReservation Alternative MainReservation RoomResidentialUI 

ResidentialReservation Alternative MainReservation RoomResidentialUI 

Figure 5-14 MainReservation UI - Insertion points list 



www.manaraa.com

111 

5.4.2 Advantages and Disadvantages of DCAC-SC approach: 

Since this development approach is an extension to the DCAC, the advantages and 

disadvantages are the same as of the DCAC approach in sections 5.2.2 and 5.2.3 except 

for the issue related to separation of concerns. The DCAC-SC method provides an 

advantage over DCAC by supporting the concept of separation of concerns between 

kernel source code and variable source code for the purpose of reducing complexity of 

developing and maintaining software . product lines. This issue was one of the 

disadvantages of DCAC pattern that is solved by the DCAC-SC pattern. 



www.manaraa.com

5.5 Development of static customization of client application 
(SCAC) with separation of concerns 

112 

The third development approach also includes the separation of optional and alternative 

source code from kernel source code. However, it is based on static customization of 

client applications, where objects are customized at source code integration time using a 

variable source code file, customization file, and an integration engine. Objects are 

customized by integrating kernel source code with only selected · optional and alternative 

source code from the generated variable source code file producing the required source 

code needed for running a single target application. 

In the SCAC method, optional and alternative source code is separated from kernel 

source code in a variable source code file for the purpose of generating customized target 

applications. But unlike the DCAC-SC method, where feature selection is performed 

after source code integration is complete, the feature selection process (SPL 

customization) in the SCAC method has to be performed before the source code is 

integrated. The code weaver engine reads feature selection and integrates only selected 

optional and alternative feature source code with kernel source code. The result of the 

integration process is an integrated source code file for the customized target application. 

The SPL customization, source code integration, and compilation are performed for each 

target application, unlike the DCAC-SC where source code integration and compilation 

are done only once to generate a dynamically customizable system at run time. This 

method produces a target application that is already customized and ready to execute. 



www.manaraa.com

Figure 5-15 shows a conceptual overview of the approach. It depicts: 

• Separation of concerns 

• SPL system architecture 

• SPL environment 

Separation of concerns 

------
SPl system architecture 

Software product line 
environment 

SPl engineering 

Feature I 
dependency tree~ 

IApIDiIC<lltlon Engineering 

Parameterized J 
vanables 

Feature selection 
& 

Values of parameterized 
variables 

Figure 5-15 Conceptual overview of SCAC approach 

113 



www.manaraa.com

114 

Separation of concerns in Figure 5-15 is based on separating kernel source code from 

optional and alternative source code into a variable source code file where separated 

source code is grouped by features. The· code weaver component is used as an integration 

engine. The code weaver reads feature selection from the customization file and 

integrates selected feature source code from the variable source code file with kernel 

source code. 

The SPL system architecture in Figure 5-15 is based on the client/server design pattern, 

where the client application contains only user interface objects, and the server 

application contains all web services and database support. In this approach there is no 

customizer object used, which was required in the DCAC and DCAC-SC for dynamic 

customization at run time. 

The software product line environment in Figure 5-15 shows a conceptual overview of 

the approach from the SPL engineering phase to the application engineering phase (SPL 

customization), which is the same as the first and second development approaches 

(DCAC and DCAC-SC). It shows the needed facilities to create the SPL environment, 

select target application features, apply consistency checks, and generate a customization 

file. 

This approach is described in the Static Client Application Customization (SCAC) 

Pattern in Figure 5-16. 



www.manaraa.com

115 

Static Client Application Customization Pattern 
Intent 
Provide a consistent reusable solution to the implementation architecture of a 
software product line using web services with provision for static customization of 
client application using the concept of separation of concerns. 

Motivation 
The goal of developing software product lines is to promote flexible software reuse. 
With the introduction of web services to SPLs, there is a need for developing a 
systematic approach that enables developers to implement a customizable overall 
system that can be customized into many single target systems using a systematic 
method for extracting the required source code for each target system. 

Solution 
The .idea behind the Static Client Application Customization (SCAC) pattern is the 
separation of concerns between kernel source code and optional and alternative 
source code for the purpose of extracting only required source code for running a 
target system. 

The SCAC Pattern has four main processes: 
1. Separation of concerns between kernel and variable source code 
2. SPL Customization 
3. Code weaving 
4. Target system interaction 

The above steps have to be performed in sequence. Variable source code has to be 
separated from kernel source code in the separation of concerns step. The SPL 
customization has to be performed next to select the target application features 
before integrating variable source code with kernel source code in the code 
weaving step. The customization file generated in the SPL customization step is 
required in the integration process. Target applications are compiled to produce an 
executable target application. 

Step 1: Separation of concerns between kernel and variable source code 
This step involves separating kernel source code from optional and alternative 
source code into a variable source code file where separated source code is grouped 
by features. This step is similar to the separation of concerns step in the DCAC-SC 
pattern, but differs in the construction of the variable source code file to include 
necessary decisions when more than one feature is involved within an insertion 
point name. These decisions enable the code weaver engine to integrate only 
selected variable source code rather than integrating all variable source code as 
done in the DCAC-SC. 



www.manaraa.com

(SCAC Pattern - Continue) 
Dynamics 
The following scenario depicts the dynamic behavior of Separation of concerns: 

• Create application classes with kernel source code. 
• Create a variable source code file that contains source code related to 

alternative and optional features. 
• Add necessary decisions within insertion point names for insertions that 

involve more than one feature (feature interaction). 
• Add insertion points to kernel source code where optional and alternative 

source code from the variable source code file will be inserted, based on 
feature selection. 

Kernel Source Code Variable source code File 
Class ••••••• .() 
{ 

$FEA'l'URE [AJ II Optional Feature 

V $START insl 
I I Insertion code 

~ 
$END insl 

$START insl 

V 
$START ins2 

I I Insertion code 
$END ins2 

~"'ins2/ 
$ENDFEA~ [A] 

$FEA'l'URE [XJ I I Alternative Feature 

V $START ins3 

I I Insertion code 

:.....i~3Z 
$END ins3 

$ENDFEA'l'URE [X] 

$FEA'l'URE[YJ II Alternative Feature 

I------ $START ins3 

II Insertion code 
$END ins3 

$ENDFEA'l'URE [YJ 
$START ins4 ~ 

$FEA'l'UREINTERACTION[C,DJ 

} ~ $START ins4 
$IF FEA'l'URE[C,DJ llBoth features selected 
II Insertion code 

$ELSEIF FEA'l'URE[C] II000y feature C selected 
II Insertion code 

$ELSEIF FEA'l'URE[D] IIOnly feature D selected 
II Insertion code 

$ENDIF 

$END ins4 

$ENDFEA'l'UREINTERACTION[C,DJ 

116 



www.manaraa.com

117 

(SCAC Pattern - Continue) 
Language description: 

• Kernel source code 
$START «insertion name»: Used to specify insertion location in 
kernel source code 

• Variable source code file 
$START «insertion name» : Used to identify optional or 
alternative source code that needs to be inserted at the location 
specified in the kernel source code. 

$END «insertion name» : Specifies the end of insertion source 
code. 

FEATURE [« feature name»]: Groups optional or alternative 
source code in a feature block. Feature blocks are integrated with 
kernel source code during the code weaving step based on insertion 
names. 

FEATUREINTERACTION[«feature 1, feature 2, ... »]: Groups 
related feature source code that requires decision on which source 
code is to be included in the code weaving step. 

$IF FEATURE [«feature 1», «feature 2», .. ]: A programmatic 
decision point within the FEATUREINTERACTION block that is 
used to notify the code weaver engine whether to include the 
following source code block or not based on selected features in the 
customization file. 

$ELSEIF FEATURE [«feature name»]: A programmatic ELSEIF 
point to be used in case the IF FEATURE statement is false. 

$ENDIF: Specifies the end of the decision statements. 

ENDFEATUREINTERACTION []: Specifies the end of feature 
interaction source code. 



www.manaraa.com

118 

(SCAC Pattern - Continue) 

Step 2: SPL Customization 
This step is identical to the SPL customization step in the DCAC and DCAC-SC 
patterns. However, this step has to be perfonned before integrating variable source 
code with kernel source code in the code weaving step. It involves selecting desired 
optional and alternative features to be included in the target application. The feature 
selector component provides a facility to make feature selection from the feature 
model and run consistency checks to verify feature selections. Once features are 
selected, selection information will be stored in the customization file by the 
customization file generator. The code weaver component reads this file to 
integrate selected feature source code with kernel source code. 

Step 3: Code weaving 
This process combines kernel source code with optional and alternative source code 
from the created variable source code file and the customization file. This step is 
based on a source code integration engine, which reads the variable source code file 
code and inserts only selected source code that is related to selected features into 
the kernel source code at the specified insertion locations. This means, if an 
optional feature is selected, its related source code in the variable source code file 
will be inserted in the target system, and if one or the other alternative feature is 
selected, only related source code of the selected alternative feature is inserted in 
the target system at the location of the insertion point. Feature grouping and 
insertion points are the key for separation of concerns and source code integration. 



www.manaraa.com

(SCAC Pattern - Continue) 
Dynamics 
The following scenario depicts the dynamic behavior of code weaving step: 

• Run the code weaver component. 
• Read selected optional and alternative source code from the variable source 

code file and integrate it into kernel classes at the specified insertion point 
locations. The generated customization file is used for making decisions on 
which feature source code to insert. 

• Compile integrated source code to generate an executable target system 
with only the required target system source code. 

Kernel source code 

ClassB ClassC 

Target System 
Source Code 

Compiler 

Variable source code 

I I 

Variable 
source 

code file 

Customizationfile 

Executable 
code 

119 



www.manaraa.com

(SCAC Pattern - Continue) 

The following diagram shows the complete processes of separation of concerns, 
feature selection, and code weaving: 

Create Kernel source code in 
classes 

Add Insertion points where 
source code from the variable 
source code file will be inserted 
based on feature selection 

Create a variable source code 
file that contains source code 
related to alternative and optional 
features 

Select target system features 
and run consistency checks 

Read selected features and 
integrate related source code 
from the feature file into kernel 
classes 

Compile the integrated source 
code to generate an executable 
target system 

----------------- ---

------------ ~------

--- - ----------- -----

-------------..,.------

Create dient Kemel 

application classes source 
code 

/' 

Add insertion points in 
classes 

Create variable source Variable 

code file source 
code file 

Select features 

Weave code nul;: I 
'---------.---_./ -"'----

'-

Compile 

Run Executable target 
application 

Integrated 
,--------- source 

code 

Executable 
code 

120 



www.manaraa.com

(SCAC Pattern - Continue) 

Step 4: Target application interaction 
Once the interactive application is integrated and compiled, it will have the 
following components structure: 

• User interface component 
• Web service component 

User interface component is responsible for accepting input from users and 
allowing invocation of possible service requests. It involves the sequencing of web 
services invocation and handling of message communication based on the 
customized workflow. It is also responsible for displaying results to users received 
from the web service component. 

121 

Web Service component is a collection of functional methods that are packaged as a 
single unit and published in the Internet for use by other software programs, in this 
case the user interface component. 

Class Collaboration Class Collaboration 
Vlleb service User interface 
Responsibility - User interface Responsibility - Web service 

- Process a service request based on - Accepts user input and service 
provided input request 

- Returns results of processed - Invoke and pass parameters to 
request appropriate web service(s) 

- Receives results from web 
service(s) 

- Display information to the user 



www.manaraa.com

(SCAC Pattern - Continue) 
Dynamics 
The following scenario shows how service requests are processed using SCAC: 

• User invokes a user interface 
• User requests a service by entering input data and clicking a button 
• User interface passes the service request and input data to a web service 

method(s). 
• Web service processes request and returns results to the user interface. A 

web service may also request service from other web services. 
• User interface displays results receiv~ from web service. 

User Input Request Service 

Service response 
Display result 

Web Service 

Process 
event 

Call other 
web 

services 

nl Invoke ~ 
L-~_u_~~r_lme __ ~_re ____ ~~~~1-.. -.-------------1-"'L-~ __ -,~ 

D 
Call otherUI Invoke other web service 

Figure 5-16 Static Client Application Customization (SCAC) Pattern 

122 



www.manaraa.com

123 

5.5.1 Development of SCAC pattern 

This section describes the development of the SCAC pattern. The "MainReservation" VI 

from the hotel product line is used for this illustration. The ideas presented in this 

example can be applied to all other user interface objects. The example will illustrate the 

approach of separating optional and alternative source code from kernel source code into 

a variable source code file. It will also explain the integration of variable source code · file 

code with kernel source code to produce a customized single target system. The 

separation and integration of source code will be based on the SCAC pattem, which 

includes the following activities: variable source code file creation, feature selection, 

consistency checking, and source code integration. Integrated source code is compiled to 

create an executable target system. The example follows the processes described in the 

SCAC pattern. 

Ifeature=RoomReservation 
AND RoomReseMltion is 

selectedl 

Invoke Room 
ReseMltion UI 

Ifealure=ResidentlalReservation 
NO Resi_lReservation is 

selectedl 

Invoke 
Residertial 

ReseMltion UI 

Ifeature=BIockReseMItion 
AND BIockReseMItion is 

selectedl 

Invoke Block 
ReseMltion UI 

Figure 5-17 Activity Diagram - Main RetervationUI 



www.manaraa.com

124 

Figure 5-17 shows the same customizable activity diagram used to illustrate the 

implementation of method 1 (DCAC)and method 2 (DCAC-SC). However, this example 

focuses on generating static client applications from a SPL system by extracting only 

required source code for running a target system. The customizable activity diagram 

repres((nts the "MainReservation" user interface. It shows "ResidentialReservation" UI 

and "RoomReservation" UI as mutually exclusive alternatives where only one of them 

can be invoked by clicking the single reservation button of "MainReservation" user 

interface (Figure 5-18). "BlockReservation" UI, on the other hand, belongs to an optional 

feature. It will be either enabled or disabled based on whether BlockReservation feature 

is selected by the user. These decisions are made at source code integration time, unlike 

the DCAC and DCAC-SC patterns where decisions are made during application run time. 

In SCAC, only selected feature source code is extracted from the variable source code 

file and integrated with the kernel source code using the code weaver engine and the 

customization file. 

Figure 5-18 MainReservation graphical user interface 



www.manaraa.com

125 

Figure 5-18 is the graphical user interface for "MainReservation" UI class. It shows two 

event buttons: Single reservation and Block Reservation. If single reservation button is 

clicked, either "RoomReservation" UI or "ResidentiaIReservation" UI will be invoked. 

Also BlockReservation button will either be visible or invisible based on feature selection 

and the SPL customization process. 

Figure 5-19 shows both the kernel source code of the "MainReservation" UI and optional 

and alternative source code in the variable source code file. Insertion points are the key 

for integrating source code together. If an optional feature is selected, its related source 

code in the variable source code file will be inserted in the target system at the location of 

the insertion point. For example, the insertion point $START BlockResButton refers to the 

optional feature "BlockReservation" in the variable source code file. If this feature is 

selected, the related source code will be inserted in the kernel "MainReservation" UI 

class in the place of the insertion point: $START BlockResButton. 

Also, if one or other alternative feature is selected, only source code related to the 

selected alternative feature is inserted in the target system at the location of the insertion 

point. For example, the insertion point $START RoomResidentialUI refers to the 

alternative features RoomReservation and ResidentialReservation in the variable source 

code file. Only one of the alternative source code blocks will be inserted. The code 

weaver engine will read the feature selection from the customization file and make the 

decision as to which source code block to insert. 



www.manaraa.com

Public class MainReseMIIion 
{ 

public MainReservation() 
{ 

1/ Related features : RoornReservation 
1/ RedientialReservation 
1/ BlockReaervation 

1/ Display All 001 components 

$START BlockRes8u1ton 

private void bIockRes_butlDn_dick() 
{ 

$START BIockResUl 

$FEAlUREJHTERACTION(RoomR--.,.ResldenlJaReservaIIon) 

$START MalnRe8erleTItIe 
$IF FEATURE[RoomResemoIIon] 

MainReUI1'iIIe = "Main Room R_; 
$ELSBF FEATURElRes-.alReaervaIIon) 

MainReUlTil1e = 'MaIn Resldenllal ResewatiorI" ; 
$ENDIF 

$END MalnReservel1tle 

126 

$ENDFEAlURBNTERACTlONlRoomReservaIIon,ResIdentIaIReservatlon) 

IIIIIIIIIIIIlflUlllllllllllllllllllllllllllllflllflflIIIIIIlIllIlIII 
$FEATUREjRoomReserwtionl 

$START RoomResiderdialUl 
RoomReseovaIionI rc = new RoomReservationl() ; 
rc.Show(); 

SEND RoomResidenliaJUl 

SENDFEA TUREjRoomReservation] 

III/lIIIII#IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIII 
SFEATUREjResklenllalReservallon) 

$START RoomResidenliaiUl 
ResiderdialReservalloni III ~ new ResidenlialR8gelVationI() ; 
IS.Show(); 

$END RoomResidenlialUI 

SENDFEATUREjRoomRegervation) 

fllIUIIHlIlIlHIIIIIIIIHlIIIIIIHlllllllllllllllllllllllllllflllH 
$FEATUREjBlockReservationl 

$START BIockRes8Ifi>n 
l/create Block reservation butk>n 
bIockRes_bIAIon.Yisibie g true; 

SEND BIocResBuIk>n 

$START BIockResUl 
bIockReservation br = new biockReseIvatio ; 
br.Show() ; 

SEND BlockResUl 

$ENDFEA TUREjBlockReservation] 

Figure 5-19 Implementation - Main Reservation UI 

Feature dependency verification is handled during feature selection using the consistency 

checker component. The consistency checker verifies feature selection and notifies the 

user whether his selection is valid or not by consulting the feature model and applying 

consistency checking rules, described in Chapter 6. The generated customization file will 

then contain all selected and verified features. The code weaver engine reads the 

customization file and makes decisions on which source code blocks to insert. The 

command $FEATURE[«feature name»] is read by the code weaver engine and 

crosschecked with the customization file to verify whether the feature condition is set to 



www.manaraa.com

127 

true or false. If it is set to true, the related source code block in the variable source code 

file is integrated with the kernel source code. Otherwise the source code block is ignored. 

The $START RoomResidentialUI insertion point is used in both alternative feature 

groupings $FEATURE[RoomReservation] and $FEA TURE[ResidentialReservation]. In 

the customization file, only one of the alternative features will be set to true in the feature 

selection process (mutually exclusive features), and only the variable source code block 

that is related to the selected feature is integrated with the kernel source code. 

The command $FEATUREINTERACTION[«feature 1, feature 2, .. »] groups related 

variable source code that require a decision on which source code to include in the 

integration process. It is used when several features are affected by the feature selection 

decision. $FEATUREINTERACTION[RoomReservation, ResidentialReservationJ is 

used to group the mutually exclusive alternative features RoomReservation and 

ResidentialReservation in one decision block. The decision commands $IF 

FEATURE[RoomReservation] and $ELSEIF FEATURE [ResidentialReservation] are 

used to specify which source code block to integrate based on feature selection in the 

customization file. The decision commands provide flexibility to developers during 

source code construction time to specify different actions that are required when two or 

more features are selected within the feature interactio~ block. For example: 



www.manaraa.com

$IF FEATUREffeature 1, feature 2] 
/ / insert code A 

$ELSEF FEATURE ffeature 1] 
/ / insert code B 

$ELSEF FEATURE ffeature 2] 
/ / insert code C 

128 

The above source code means that if feature 1 and feature 2 are selected then insert 

source code A. If only feature 1 or feature 2 is . selected then insert either source code B or 

C blocks. 

The variable source code file in Figure 5-19 can also be rewritten to include alternative 

features RoomReservation and ResidentiaIReservation in one feature interaction grouping 

rather than two different feature groupings as shown iIi Figure 5-19. The sample source 

code in figure 5-20 shows the structure of the grouping: 



www.manaraa.com

Public class MainReserva1lon 
{ 

pub~c MainReservalion() 
{ 

1/ Related features : RoomReservation 
1/ RedientialReservalion 
II B~Reservalion 

II DiSplay ALL GUI components 

$START _nR_rvITltle 

$START BlockResButton 

private vokl singelRes_butlXln_cfick{} 
{ 

$START RoomResldentialUI 

private vokl bIockRes_bla>n_cIIck{} 
{ 

$START BlockResUl 
} 

$FEA TUREINTERACTION(RoomReservatlon,ResldentialReservatlon] 

$START MalnReserveTltie 
$IF FEATURE(RoomReservatlon] 

MainReUlTiIle = "Main Room Reservation" ; 
$ELSEIF FEATURE(ResldentlaIReservatlon] , 

MainReUlTiIle = "Main Residential Reservation" ; 
$ENDIF 

$END MalnReserveTitle 

IIIU"""""1 
$START RoomResldentlalUI 

$IF FEATURE(RoomR_rvatlon] IIAHllmative feature 
RoomReservalioni rc = new RoomReservationl() ; 
IC.Show() ; 

$ELSEIF FEATURE(ResldentlalReservatIon] . II AlternatiVe feature 
ResidentialReservalioni rs = new R8$idenlial~rvalionl() ; 
rs.Show() ; 

$ENDIF 

SEND RoomReskientialU1 

129 

$ENDFEATURElNTERACTlON(RoomReservatlon;ResIdentIaIReservatlon] 

""""1"11161116"""116"""11111111111111""""""""111111111"""11""""""""10"1""111111" $FEA TURE(BIockReservatlon] II Optiohal Feature 

$START BIockResButton 
l/create BIocI< reservation buIIDn 
bIockRes_buIIon.visibIe = true; 

$END BIocResButton 

$START BIockResUl 
bIockReservalion br = new bIockReservation() ;: 
br.Show() ; , 

$END BlockResUl 

$ENDFEATURE[BlockReservatlon] 

Figure 5-20 Implementation - Main Reservation UI 

, 

Even though in this case there is no different action required when two or more features 

are selected because the two features are mutually exclusive, Figure 5-20 demonstrates 

the possibility of combining related variable source code blocks into one feature 

interaction block. This is an implementation decision that is left to ;the developer. 

However, if different actions are required when two or more features are selected, feature 

interaction grouping is mandatory to enable the code weaver engine to make the decision 

on which source code block to integrate. 



www.manaraa.com

Public class MainReservation 
{ 

public MainReservationO 
{ 

/I Related features: RoomReservation 
/I RedientialReservation 
/I BlockReservation 

Variable source cOde inserted at 
$START MainReServeTitie 

I ~ insertion point where 

130 

_ ~se~~~ed~ ____________ ~ 
/I Display ALL GUI components ~v RoomReservation feature is 

MainReUlT1tIe = "Main Room Reservation" ; 

IIcreate Block reservation button 
bIockRes_button.visibie = true; 

Variable source C9de inserted at 
+01_1---------------+----\ $START B/ockRe~Button 

insertion point 

private void singieRes button clickO Variable source code inserted at 
{ - - $START RoomResidentialUI 

RoomReservationl rc = new RoomReservationlO ; ~+-_--I insertion point where 
rc.ShowO ; - RoomReservation feature is 

se~ed 

private void bIockRes_button_c/ickO 
{ Variable source cOde inserted at 

} 

bIockReservation br = new blockReservationO ; ~+--_--I $START BlockResUI 
br .ShowO ; - - rt' -nt Inse IOn pol : 

Figure 5-21 Implementation - Main Reservation UI with RoomReservation: feature 

Whether the variable source code file structure of Figure 5-19 or Figure 5'-20 is used, the 

result of ·the integration process will be the same. Figure 5-21 shows the 

"MainReservation" UI class after the integration process. In this class, the 

BlockReservation feature and the RoomReservation feature are inserted in the kernel 

source code. Inserted blocks are: 

• Insertion point $START MainReserveTitle in the kernel source code IS 

replaced with the following source code from the variable source code file : 

MainReUITitle = "Main Room Reservation" ,-
, 

• Insertion point $START BlockResButton in the kernel sourceqode is replaced 

with the following source code from the variable source code file: 



www.manaraa.com

II Create block reservation button 
blockRes _button. visible = true .. 

131 

• Insertion point $START RoomResidentialUI in the kernel source code is 

replaced with the following source code from the variable sour~e code file: 

RoomReservationl rc = new RoomReservationlO ; 
rc.ShowO; 

• Insertion point $START BlockResUI in the kernel source c~de is replaced 

with the following source code from the variable source code file: 

block Reservation br = new blockReservationO ; 
br.ShowO .. 

Public class MainReservation 
{ 

public MainReservationO 
{ 

1/ Related features : RoomReservation 
1/ RedientiaiReservation 
1/ BIockReservation Variable source code inserted of 

$START MainReserVeTitIe 
insertion point where 

~ ResidentialReservatipn feature is 

1/ Display ALL Gut components ~ 
selected : 

Variable source code NOT inserted of 
MalnReUITlUe = "Main ResIdential Reservation" ; $START BIockResBUlton 

"$START BIockResButton .. ~ insertion point. becaUse 
BIockReservation ~ture is NOT 

} selected 

private void singeIRes_button_cick(} Variable source cod8 inserted of 
{ $START RoomResidentialUI 

insertion point where ResidentiaiReservation rs = new ResidentiaiReservation() ; ~esidentialReservatibn feature is rs.Show() ; selected 
} 

private void bIockRes_button_cickO Variable SOlB'ce code NOT inserted of 
{ $START BIockResUI: 

II$START BIockResUI insertion point, because 
} BIockReservation feature is NOT 

selected 

Figure 5-22 Implementation - Main Reservation m with ResidentialReservation feature 



www.manaraa.com

132 

Figure 5-22 shows the "MainReservation" VI class after the integration process. In this 

class, the ResidentialReservation feature is selected but not the BlockReservation feature. 

Therefore, only the source code related to ResidentialReservation featur~ is inserted in 

the kernel source code. Inserted blocks are: 

• Insertion point $START MainReserveTitle m the kernel source code 1S 

replaced with the following source code from the variable sour~ code file: 

MainRe UITitie = "Main Residetial Reservation" ; 

• Insertion point $START RoomResidentialVI in the kernel source code is 

replaced with the following source code from the variable sour<;:e code file : 

ResidentialReservationl rs = new ResidentialReservationl() ; 
rs.ShowO; 

The implementation of the insertion points in the variable source code file: of this method 

differs from the DCAC-SC. In the DCAC-SC pattern, insertion points have no decision 

conditions to tell the coqe weaver engine what part of the source code to include or 

ignore. In the SCAC method, the IF FEATURE and ELSEIF FEATURE decision 

statements are used to extract only selected variable source code aIidperform the 

integration with kernel source code. The SCAC approach is suitable for SPL applications 

that require distribution of only needed target application source code. 



www.manaraa.com

133 

5.5.2 Advantages of SCAC approach: 

The advantages of the SCAC are similar to DCAC and DCAC-SC methods regarding the 

use of service-oriented architecture in developing software product lines. However this 

method has a different advantage at the SPL customization phase. In the SCAC method, 

only selected variable source code is extracted from the variable source code file and 

integrated with the kernel source code, which means elimination of source code 

overhead. Static workflows are produced to eliminate source code overhead for decisions 

made during run time as to what optional or alternative source code to execute, which are 

required in the DCAC and DCAC-SC approaches. All integrated source code in the 

SCAC approach will be used in the target system. 

5.5.3 Disadvantages of SCAC approach: 

• Source code extraction is required for each target system. 

• Target system has to be compiled every time a target system is customized. 



www.manaraa.com

134 

5.6 Comparison of customization methods 

Table 5-1 is a comparison of the three customization methods. It shows all the 

characteristics of each method compared to the other two methods. 

Method 1 Method 2 Method 3 
(DCAC) (DCAC-SC) (SCAC) 

Customization At run time At run time At code weaving 
time 

Insertion points No Yes Yes 

Separation of No Yes Yes 
common and 
variable. source code 

Application code All optional and All optional and Source code specific 
alternative source alternative source to target application 
code is included code is included 

Customization of Dynamic Dynamic Static customization 
application customization customization 
workflows 

Common & variable No integration Once Every time a target 
source Code application is 
integration customized 

Compilation Once Once Every time a target 
application is 
customized 

Feature interaction Variable source Variable source No feature decisions 
in application code code and feature code and feature in target code 

decisions are decisions are 
intertwined intertwined 

Table 5-1 Comparison of the Three Patterns 



www.manaraa.com

135 

5.7 Usage of Development Approaches 

Based on the advantages and disadvantages of each approach, a development approach 

can be selected. The DCAC development approach enables developers to build a 

dynamically customizable application that can be customized at run time. Once the SPL 

application is developed and compiled, modification to source code of derived target 

applications is not required. Application engineers can select desired features for a target 

application and generate a customization file to be used at run time. 

The DCAC-SC approach is developed to address the issue of separation of concerns 

related to the dynamic customization of client applications (DCAC). Developers may use 

this approach for better maintenance of SPL applications by separating variable source 

code from kernel source code into a variable source code file. However, this approach 

requires more work for developers to do the separation and integration of variable source 

code and kernel source code. 

The SCAC approach is suitable for SPL applications that require extracting only needed 

source code to run target applications. This approach eliminates code overhead, which is 

required in the first two approaches for making decisions as to what optional or 

alternative source code blocks to execute during run time. In this approach, all integrated 

source code of selected features will be used in the target system. However, the SCAC 

approach requires. source code integration and compilation for every customized target 

application. 



www.manaraa.com

136 

5.8 Summary 

This chapter has described three development and customization methods to configure 

applications from a software product line that is based on service-oriented architecture: 

dynamic customization of client application, dynamic customization of client application 

with separation of concerns, and static customization of client application with separation 

of concerns. A design pattern was used to describe each development and customization 

method. Activity diagrams, screenshots, collaboration diagrams and source code samples 

illustrate the development of each approach in the context of alternative and optional 

feature selection for applications derived from a software product line. 

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

6. SOFTWARE PRODUCT LINE ENVIRONMENT 
PROTOTYPE 

6.1 Introduction 

137 

This chapter describes the Software Product Line Environment Prototype (SPLET) as a 

proof of concept for this research. It is based on the PLUS environment of the 

Evolutionary Software Product Line Engineering Process In Figure 6-1 

[GomaaOO,Gomaa04]. SPLET is a SPL independent prototype that is designed to cover 

the SPL environment. It covers the software product line engineering phase and the 

application engineering phase (SPL customization). 

Product Line Multiple-View Model, 
Product Line Product Line Architectme, 

Requirements Product Line Reusable Components 

.--_+'1 Engineering 

r -.... r-- ___ 

Product Line 
Reuse 

Library 
'--

Target System 
Requirements ,---'"----, Target System 

ApJiica1ion 
Engineering 

Unsatisfied Requirements, Eours, Adaptations 

Figure 6-1 Evolutionary Software Product Line Engineering Process 

Software Product Line Engineering Based on Web Servicesالعنوان:

Saleh, Mazen M. Aquilالمؤلف الرئيسي:

Gomaa, Hassan(Super.)مؤلفين آخرين:

2005التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

:MD 618453رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

البرمجيات، الإنترنت، تقنية المعلومات، هندسة الحاسباتمواضيع:

https://search.mandumah.com/Record/618453رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618453


www.manaraa.com

6. SOFTWARE PRODUCT LINE ENVIRONMENT 
PROTOTYPE 

6.1 Introduction 

137 

This chapter describes the Software Product Line Environment Prototype (SPLET) as a 

proof of concept for this research. It is based on the PLUS environment of the 

Evolutionary Software Product Line Engineering Process In Figure 6-1 

[GomaaOO,Gomaa04]. SPLET is a SPL independent prototype that is designed to cover 

the SPL environment. It covers the software product line engineering phase and the 

application engineering phase (SPL customization). 

Product Line Multiple-View Model, 
Product Line Product Line Architectme, 

Requirements Product Line Reusable Components 

.--_+'1 Engineering 

r -.... r-- ___ 

Product Line 
Reuse 

Library 
'--

Target System 
Requirements ,---'"----, Target System 

ApJiica1ion 
Engineering 

Unsatisfied Requirements, Eours, Adaptations 

Figure 6-1 Evolutionary Software Product Line Engineering Process 



www.manaraa.com

138 

During the software product line engineering phase, SPLET enables SPL engineers to 

store links to all design models, architectures, and application components in the reuse 

library for the purpose of navigating between the multiple-view models and testing web 

service components. In this phase a facility is provided to enable the creation of a SPL 

Model ·that organizes all SPL engineering components by their related features. The SPL 

Model is used as the main driver for customizing the SPL application in the next phase. 

The application engineering phase is addressed in SPLET through the provided facilities 

that enable application engineers to select desired features, run consistency checking 

rules, and customize target applications using one of the three implementation 

approaches, described in Chapter 5. 

6.2 Software Product Line Environment Prototype (SPLET) 

The software product line environment prototype is a domain independent prototype that 

covers the entire SPL life cycle. It is designed to support most popular languages such as 

C, C++, C#, JAVA, and J++. 

SPLET prototype is based on organizing a SPL into features that are categorized as 

kernel, optional, and alternative: Features are the main driver for organizing SPL 

components and customizing target applications. Each feature in the SPL Model stores 

links to all related designs, architecture, and implementation components. The SPLET 

prototype helps visualize the overall SPL by providing a flexible navigation facility 



www.manaraa.com

139 

through the SPL Model, and provides the needed facilities to customize target 

applications. 

SPLET prototype includes the following components: 

• SPL feature editor: 

Allows SPL engineers to create a feature dependency tree and defines 

feature relations. 

Allows SPL engineers to create parameterized variables for each 

parameterized feature. 

Allows SPL engineers to define mappings between features and related 

web service components. 

Allows SPL engineers to define mappings between features and related 

artifacts, such as specifications, designs, and test procedures. 

• Web service editor: 

Allows SPL engineers to enter web service components and link them to 

their location on the Internet. The entered web service list is used by the 

SPL engineers to map web services to features using the feature editor 

component. 

• Feature selector: 

Allows application engineers to select desired features 

Allows application engineers to enter values for parameterized variables 



www.manaraa.com

140 

• Consistency checker: This component is part of the feature editor. It serves as a 

checker for ensuring that selected features are consistent with each other. When a 

feature is selected, the consistency checker is invoked to verify selection. 

• Customization file generator: This component is responsible for automatically 

generating a customization file that is required for the dynamic customization of 

client applications at system run time. It is based on the feature selector 

component. It sets the selection status of each feature to true/false and stores the 

values of parameterized variables. 

• Variable source code editor: Creates a variable source code file that stores related 

optional and alternative source code for each feature to be used in the source code 

integration process. 

• Code tracker: Locates insertion source code in the variable source code file and 

kernel source code by features. 

• Code weaver: This component is used for the source code integration process. It is 

responsible for integrating kernel source code with optional and alternative source 

code using the automatically generated variable source code file and feature 

selection. 

• File extractor: This component is used to retrieve specifications, designs, source 

code, and test procedures for the selected features. 



www.manaraa.com

Figure 6-2 summarizes the proof-of-concept prototype SPLET. 

Feature Modeling 

- Creates a feature dependency tree and defmes 
feature relations. 

- Creates parameterized variables for each 
feature 

- Links each feature to related specifications, 
designs, test procedures, and implementation 
components. 

- Enters web service components and links them 
r----------.. ---.. --- --� to their location on the Internet 

""""==== 

Customization components 

. - Selects desired features 
____ ____ ____ _______ - Enters values for parameterized variables 

=~~~""" m u m_um. - ___ 1 verifies feature selection 

Generates a customization me that is required for 
the dynamic customization of client applications 

L!ti!m!l!miO-··--------··--------1 at system nm time. 
L-________________________________ ~ 

Separation of concerns & integration components 

Utility 

Creates a variable source code file that stores 
1Mm;w¢'$i~~ _____ . __ ... ---.. ---.- 1 related optional and alternative source code for 

each feature to be used in the integration process 

rrei?m~Wl--------- --- ------ - Tracks insertion code in the variable source code 
fue and the kernel source code 

Integrates kernel source code with optional and 
· ____ · ____ · ____ · ____ · ___ 1 alternative code using a variable source code me 

and a customization file 

Extracts specifications, designs, source code, and 
'L+----·--- ·· --- ·------- ~ test procedures of selected features 

Figure 6-2 SPLET components 

141 



www.manaraa.com

142 

Figure 6-3 shows a detailed description of SPLET components. It consists of four 

subsystems: feature modeling, customization, separation of concerns, and supporting 

utility components. 

Feature Modeling 

SPL Customization 

Separation of 
concerns & source 

code Integration 

Utility 

__ / /-j Feature model J 

/ cu,stomrization file 

Target system 
Customization file 

- Analysis 
- Design 
- Components 

Feature selection 
& 

Values of 
Parameterized variables 

- Selected ana lysis 
- Selected design 

ra~~Ll---==F~~-=E~ - Selected componenls 
- Selected test procedures 

Figure 6-3 Detailed description of SPLET 



www.manaraa.com

143 

Figure 6-4 shows the main screen of SPLET with its division of subsystems shown in 

Figure 6-3. The next section describes in detail each subsystem and its related 

components. 

Doman independent customization tool 
for S oItware product lines Service-
Oriemd Archiledu'e that caplues and 

.. . manipUates !he rie SPl. enviooment 

Figure 6-4 SPLET - Main Sc~n 

6.2.1 Feature Modeling Subsystem: 

This subsystem consists of two components: SPL Feature Editor and Web Service Editor. 

The two components interact with the SPL Model database for creating the feature model 

and all product line artifacts. Product line artifacts consist of specifications, designs, web 



www.manaraa.com

144 

service components, source code, and test procedures. This subsystem is the basis for all 

other subsystems. Figure 6-5 shows the subsystem and the interaction between the 

components and the SPL model database. The subsystem consists of two components: 

SPL Feature Editor and Web Service Editor. The SPL feature editor component is used to 

create the feature model as a hierarchical feature tree. It · also associates the SPL artifacts 

to their related features. The web service editor component is used to enter all needed 

web services for the SPL application. The SPL model database is the reuse library for the 

SPL environment. 

Feature Modeling 

///1 Feature model J 
~ ........ .. , 

-- -___ - Analysis 
----,- - Design 

- Components 

Figure 6-5 Feature Modeling Subsystem 

Figure 6-6 shows the entity class diagram for the SPL model. It consists of the following 

entity classes: 

MainFeatureSelection: Stores all feature names, their description, features type (kernel, 

optional, alternative), and feature grouping names of related alternatives. 

Variable: Stores parameterized variables for each parameterized feature. 



www.manaraa.com

145 

Target App!icaIions I SP!.. Environmant 

ParentFeature 

I - feature: String 
- parent: SIring 

TargelSystemFeature I • 1 .. " I 
- TargetSysName: SIring 

~ Variable 
- feature: string 
- selection: Boolean I ~ Has~ 0 .. " i_ feature: SIring 

10 - varNarne: SIring 
.~ 

11 11 < 1 
~Makes I 1 MainFeatureSeleclion i 

I - feature: SIring 
- type: string 

I - grouping: string 1 Has ~ 
- description: string 

10 .. " targetSystemVar 

I ~ Makes 11 
1 

- TargetSysNarne: String 1 18 Diagram 
- feature: SIring I 
- varName: String • ,. -feature: string 
- varT ext: string o. " - diagramName: String 

I FeatureWebService - path: string 
- type: string 

- feature: string 
- wsNarne: string 

I - wsMethod: String 

V'kbSeIvice 
1 .. " 

I ~ Has 1 -wsName: string 
- wsMeIhod: SIring 
- wsMethodDescription: string 

I 
- Locaion: string 

Figure 6-6 Entity . Class Diagram 

ParentFeature: Stores the parents of each feature to create the feature tree required in 

the customization and consistency checking processes. 

Diagram: Stores feature name, diagram name, and diagram path (storage location) of all 

analysis, design, source code files, and testing procedures for the purpose of navigating 

through the multiple-view model. Diagrams are categorized by type (analysis, design, 

source code, and tests) in the type field . 



www.manaraa.com

146 

FeatureWebService: Stores feature name, web service name, and related web service 

methods to enable the invocation of web services in the SPLET prototype, for the 

purpose of testing their behavior and their required input and output. 

WebService: Stores all web service names, related web service methods, description of 

each web service method, and their URL location in the Internet. 

TargetSystemsFeature: Stores features and their selection status for each target 

application. 

TargetSystemVar: Stores features and values of related parameterized variables for all 

target applications. 

The following describes the two components of the SPL Feature Modeling subsystem: 

Feature Editor and Web Service Editor. 

6.2.1.1 Feature Editor Component 

This component is used to create the SPL model. It provides the following facilities: 

• Allows SPL engineers to create a feature tree and defines feature relations. 

• Allows SPL engineers to create parameterized variables for each feature 

• Allows SPL engineers to define mappings between features and related 

specifications, designs, test procedures, and implementation components. 



www.manaraa.com

147 

Figure 6-7 Feature Editor-main interface 

The main user interface of the Feature Editor component in Figure 6-7 is decomposed 

into several screen snapshots to describe each part of the main user interface. 



www.manaraa.com

148 

The Feature Editor user interface of Figure 6-8 is used to create features and associate 

features to their parents to produce a feature tree. 

Figure 6-8 Feature Editor - feature creation 

Figure 6-9 shows the sequence diagram for creating features m the Feature Editor 

component. 

SPLongo> I Feature Editor 
I 

I «entity» , I l «entity» 

I .... ; MainFeatureSelection :ParentF~a!yre 

1 
Enter feature info 

p store feature info 

Enter parents info store related parents 

_ Figure 6-9 Feature Creation 



www.manaraa.com

149 

The following explains the process: 

• SPL engineer enters feature name, type (kernel, optional, alternative), description, 

and grouping name of alternative features. 

• SPL engineer enters associated feature parents. 

• The Feature Editor component stores entered information In the 

MainFeatureSelection and ParentFeature tables of the SPL model database. 

Features are created from top of the tree to bottom. The top level feature is the main 

parent feature. Under the main feature, features under different levels of the hierarchy are 

created and associated with related parent(s) to form the feature tree. From the design 

model of Chapter 4, Figure 6-10 shows the feature tree used in the hotel system. In the 

top level, the main feature forms the root of the tree. The other features may have one or 

more parents associated with them. For example, "BlockCheckout" feature has 

"Checkout" and "Blockreservation" features as its parents. 

For alternative features, the feature grouping "Reserve" is used to group the mutually 

exclusive alternative features "RoomReservation" and "ResidentialReservation". In -the 

grouping field of Figure 6-8, the "Reserve" feature grouping is entered. The group name 

of the next related alternative feature created with the Feature Editor can be selected from 

the dropdown list of groupings. 



www.manaraa.com

? 

I 
I 
I 

/ / , 
/ , 

~ , 
/ , 

/ , 
// , 

/ , 
/ I, 

r;(. ~ IF-I , \ 

" \ 

I 
I 
I , \ , \ . J3r::sm~~,--- \\ ~ 

\ 
\ 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

~MI 
I _____________________________________________ ~ 

~~---, 

Figure 6-10 Feature dependency tree 

150 

The Feature Editor user interface of Figure 6-11 is used to define mappings between 

features and related specifications, designs, test procedures, and implementation 

components. 

Figure 6-11 Feature Editor - related diagrams 



www.manaraa.com

151 

Figure 6-12 shows the sequence diagram for associating SPL artifacts to features in the 

Feature Editor component. 

SPLengineer Feature Editor 

Enter links and 1 
classification to SPL 

artifacrs 

I 

Store feature info 

<<entity» 
: Diagram 

Figure 6-12 Storing related SPL artifacts 

The following explains the process: 

I 

• SPL engineer enters links to associated SPL artifacts to each feature 

(specifications, designs, source code files, test procedures), and selects the proper 

classification of the artifact from the dropdown list of classification types. 

• The Feature Editor component stores entered information in the Diagram table of 

the SPL model database. 

The Feature Editor user interface of Figure 6-13 is used to create parameterized variables 

related to each feature. During customization, the values of parameterized variables are 

entered using the Feature Selector component under the customization subsystem. The 

customization file generator component extracts this information from the SPL model 

database. 



www.manaraa.com

152 

Figure 6-13 Feature Editor - parameterized variables 

Figure 6-14 shows the sequence diagram for creating parameterized variables in the 

Feature Editor component. 

SPl_ Feature Editor 

1 
Enter variable names 

I 
«entity» 
:Variable 

Store Variable names 

Figure 6-14 Creation of parameterized variable 

The following explains the process: 

I 

• SPL engineer enters variable names to each parameterized feature. 

• The Feature Editor component stores entered · information in the variable table of 

the SPL model database. 



www.manaraa.com

153 

The Feature Editor user interface of Figure 6-15 is used to relate web services to each 

feature. This information is used in the Feature Selector component under the 

customization subsystem to enable the invocation of web services for the purpose of 

testing their behavior and their required input and output. 

Figure 6-15 Feature Editor - web services 

Figure 6-16 shows the sequence diagram for associating related web services to a feature 

using the Feature Editor component. 

SPI.en I Feature Editor I I 
«entity» 

I I «entity» 
giIeer :WebService :E~tureWeb~!yice 

Request web 1 
service list Read web service list 

Display list 
Return list 

Select web service 

Store web service 

Figure 6-16 Adding web services 



www.manaraa.com

154 

The following explains the process: 

• SPL engineer requests a web service list from the Feature Editor component. 

• The Feature Editor component reads the web service list from the Web Service 

table. 

• The web service list is returned to the Feature Editor component and displayed to 

the user. 

• SPL engineer selects feature related web services from the list. 

• Selected web services are stored in the FeatureWebService table. 

6.2.1.2 Web Service Editor 

The Web Service Editor is part of the Feature Modeling subsystem. Figure 6-17 shows 

the interface for this component. It is used to enter all needed web services related to the 

SPL application. The information is stored in the Web Service table of the SPL model 

database. It is used in the Feature Editor component to select web services from this list. 

It is also used by the Feature Selector component to invoke web service methods. 



www.manaraa.com

canceIRoom server 
canceIReside ,server 

'checkinFrom . ~ 
checkin : server 

.!erver 

. !elver 

: server 

'verifyCC 
IoginUser 

, http://Iocal!ost\HoteISyt\verifyCCWerifyCredlCaidasrmt?op=verify 
. r.tp:IlIocahJstl.HotelSyt\Login\llSlJoginasrnx ?op=loginUser 

QueryAeserv server 
f}ueryB~ server 

Figure 6-17 Web service editor 

155 

Figure 6-18 shows the sequence diagram for entering needed web services that are related 

to the SPL application. 

SPL engineer 

Enter web service info 

«entity» 
:vyebService 

Store web service info 

Figure 6-18 Adding web services 



www.manaraa.com

156 

The following explains the process: 

• SPL engineer enters web ServIce information in the Web Service Editor 

component. 

• The Web Service Editor component stores entered information tn the 

Web Service table of the SPL model database. 

6.2.2 Customization subsystem: 

This subsystem is used to customize target applications. It consists of three components: 

Feature Selector, Consistency Checker, and customization file generator. The Feature 

Selector and Consistency Checker components interact with the SPL model database for 

selecting features, entering values for parameterized variables, and verifying selected 

features. The customization file generator component generates the customization file 

used by the dynamic client application to enable customization at run time. Figure 6-19 

shows the subsystem and the interaction between the components and the databases. 



www.manaraa.com

Customization 
components 

SPL 
model 

Target sys1em 
Customization file 

Feature selection 
& 

Values of 
Parame1erized variables 

Figure 6-19 Customization Subsystem in SPLET 

157 

The following describes the three components of the customization subsystem: Feature 

Selector, Consistency Checker, and customization File Generator. 

6.2.2.1 Feature Selector 

This component is used to customize target applications and navigate through the feature 

tree. Figure 6-20 shows the main user interface of the Feature Selector component. This 

component provides the following facilities: 

• Allows application engineers to select target application features. 

• Allows application engineers to enter values of parameterized variables of 

selected features. 

• Allows application engineers to navigate through the SPL environment to: 



www.manaraa.com

158 

View feature selection. 

View specifications, analysis, design, and source code files related to 

each feature. 

Invoke web servIce methods related to each feature for testing web 

services behavior and their input and output. 

Figure 6-20 Feature Selector main interface 



www.manaraa.com

159 

Figure 6-21 shows the sequence diagram for customizing target applications. 

I FeaWffi II Consmency II «entity» 

II « entity» II « entity» II « entity» II « entity» J ...... :MliIinF!i!iiIlI!l! ~ ~::res 'ra=:ms 'TargetSystemYar 
~ 

Selector Checker 

SeIed_ 1 
Request -... inIo 

FeaIure_ 

R_, 
Display info 

Parameterized __ 

Enable/Disable ......... R..-.-- _-.res_ 
Feature .... 

Read l int> ---Display c ___ 
Verit_ 

0< ........... ' """'\I_ 

EsUr_ 
values 

Save Save_ .... ~<Il aflarget syst. 
_on 

Sa"" veriab ... values 

Figure 6-21 Feature Selector - Customization 

The following explains the process: 

• Application engineer selects a feature to be customized. 

• Feature Selector component requests feature information from the 

MainF eatureSelection table of the SPL model database. 

• Feature Selector component requests related parameterized variables from the 

Variable table of the SPL model database. 

• Feature Selector component displays feature information and related 

parameterized variables. 

• Application engineer requests from the Feature selector component to enable or 

disable the selected feature. 



www.manaraa.com

160 

• Feature Selector component requests from the Consistency Checker component 

verification to enable or disable the selected feature. 

• Consistency Checker component reads the MainFeatureSelection table and the 

ParentFeature table. 

• Consistency Checker component applies consistency checking rules to enabled or 

disabled feature. 

• Consistency Checker component displays a confirmation or rejection message to 

application engineer. 

• Application engineer enters the values of parameterized variables. 

• Application engmeer saves customization information m the 

TargetSystemsFeatures table and the TargetSysVar table of the SPL model 

database. 

The Feature Selector user interface of Figure 6-22 is used to locate and display a feature 

related artifacts (specifications, designs, source code files, etc.) from the SPL model. The 

stored path and name are used to locate the artifacts. The selected artifact . is displayed 

using its original tool (Visio, Rational Rose, PowerPoint, MS Word, etc.). 



www.manaraa.com

161 

Figure 6-22 Feature Selector - diagrams 

Figure 6-23 shows the sequence diagram for displaying feature related artifacts. 

Feature Selector <<entity» <<entity» 
: MainFeatureSelection : Diagram 

1 .. 

Select feature - Request feature info 

Feature info 

Reouest feat! re related artifacts 

Feature relal ad artifacts 
Display info 

Select artifact 

Display artifact 

Figure 6-23 Display artifacts 



www.manaraa.com

162 

The following explains the process: 

• Application engineer selects a feature to view its artifacts. 

• Feature Selector component requests feature information from the 

MainF eatureSelection table of the SPL model database. 

• Feature Selector component requests related feature artifacts from the Diagram 

table of the SPL model database. 

• Feature Selector component displays feature information and related feature 

artifacts. 

• Application engineer selects a feature related artifact. 

• Feature Selector displays selected artifact in its original tool (Visio, Word, etc.). 

The Feature Selector user interface of Figure 6-24 is used to invoke a feature related web 

service meth<;>d. 

Figure 6-24 Feature Selector - related web senices 



www.manaraa.com

163 

Figure 6-25 shows the sequence diagram for invoking a web service method. 

Feature Selector «entity» «entity» 
: MainFeatureSelection : FeatureWebService 

Select feature J 
Request feature info 

Feature info 

Reauest featu related web services 

Display info 
Feature relab ~ web services 

Select web service 

Display Web Service 
Invocabon 

Figure 6-25 Web Service Invocation 

The following explains the process: 

• Application engineer selects a feature to invoke its related web services. 

• Feature Selector component requests feature information from the 

MainF eatureSelection table of the SPL model database. 

• Feature Selector component requests related feature web servIces from the 

FeatureWebService table of the SPL model database. 

• Feature Selector component displays feature information and related feature web 

servIces. 

• Application engineer selects a feature related web service. 

• Feature Selector invokes the web service. 



www.manaraa.com

164 

Figure 6-26 shows a sample web service method. The reserveRoom web service method 

is shown with all required input using the standard input interface that is provided with 

the .NET framework. 

reservationWS 
Click ls~~.t!,l for a complete list of operations . 

reserveRoom 
Test 

To test the operation using the HTTP POST protocol, click the 'Invoke' button. 

' pTel: 

pCreditCardNo: 

p E x pir ati anD ateStr: C.·~~.·.·.~·~.·.·.·.·.·.·::.'.·::==~~·:'~·:'·:'~~~·:'·~·:'·:.~'::::::.'.'.~'.':::.':::::::.'::.':".'.'.~'.':.'~::~':.'.~'.'.'.~'.':.~~''':.~~~'~~! 
pC redrrTy pe : !::: ........................ : .. ::.~=~.:::~:::::::::::::::::::::.~.:::::::::::::::::::: ...... ::::::::::.~~.~.::::::::::.':::::::J 
pResRoomType: 

pArrivalDateStr: 

pDaysNo: 
: . _. __ ._~ __ ~_ •• _ •• ~ • • v .................. , ••••••••• , . , . , . , • •••••• ,.,. . . .... . . . . .... . . . . . . . . . . . . .... . . . . . . . . . . . . ....... . . . . . . . . . ..... . _ . . . . ... _ . . . .......... . ... . . ..... . . . . . . . . . . . _ •• _ ••• • • • •• • • "' . ....... . . .... . : 

pNumberOcc: 

Figure 6-26 Web Service invocation - ReserveRoom 

Figure 6-27 shows a sample SOAP request and response for the reserveRoom web 

service method. This figure is displayed along with the input interface of Figure 6-26. It 



www.manaraa.com

165 

describes the expected input and output types and location of the web servIce m 

XML/SOAP fonnat. 

Figure 6-27 SOAP message 



www.manaraa.com

166 

Figure 6-28 shows the results returned from the reserveRoom web service method. The 

reservation number "1020" is returned in XML format. If the room reservation 

transaction is not successful, an integer value of zero is returned instead. 

~ ".."..~ ~ ,.,,,.. ~.-".-, ...... ,,,, .. uo·ur". ,. ..... . ,. //."'-"'/,'- ". • ••• , • • " ........ .v ...... d ....... ... ,r... ,N .... <'"f" .. , ... , ...... ~ ........ .- ... ' ... . ." • • -.,,,. 

:a http; /flt; (;,ilh,)~ (j1'1f)l e 1&)' s lre!i-!!f><.~Ih:Htfrf.tS+.E1 Yal i iHlW~ .• ,wtMrgse,rm£!Ofll . f;tltA m .. :t( f Irs t!!lll€:f hphmn 

<?xml version=· 1.0" encoding="utf-S· 1> 
<in t l>irnlns="http ://tempurl .org/">1020</ inb 

Figure 6-28 Results returned from roomReservation WS 

6.2.2.2 Consistency Checker Component 

This component is part of the Feature Selector component. It serves as a check for 

ensuring that features selected for the target application are consistent with each other. 

When a feature is selected using the "Update Selection" button of Figure 6-20, the 

Consistency Checker is invoked to verify selection. If a selected feature causes a 

violation to the SPL model, a warning message appears with proper explanation to the 

reason why this feature can not be selected or deselected. The following explains the 

consistency checking rules and action performed. 

Consistency checking rules: 

• Rule 1: A feature can not be deselected if it is a kernel feature. 

Action: Feature selection is disabled. 



www.manaraa.com

167 

• Rule 2: Optional and alternative features can be selected or deselected if all of the 

following consistency rules are satisfied. 

Action: Based on rules 3 to 13. 

• Rule 3: An optional feature cannot be selected if parent feature is an optional 

feature and it is not selected. 

Action: Message appears ("Feature can not be selected. Parent Feature must be 

selected first"). 

• Rule 4: An alternative feature cannot be selected if parent feature is an optional 

feature and it is not selected. 

Action: Message appears ("Feature can not be selected. Parent Feature must be 

selected first"). 

• Rule 5: An alternative feature can not be selected if parent feature IS an 

alternative feature and it is not selected. 

Action: Message appears ("Feature can not be selected. Parent Feature must be 

selected first"). 

• Rule 6: An optional feature can not be selected if parent feature is an alternative 

feature and it is not selected. 

Action: Message appears ("Feature can not be selected. Parent Feature must be 

selected first"). 

• Rule 7: An optional feature can be selected if parent feature is kernel. 

Action: Feature is selected. 

• Rule 8: An alternative feature can be selected if parent feature is kernel. 



www.manaraa.com

168 

Action: Feature is selected and all of the other alternative features in the related 

set are deselected. 

• ,Rule 9: An optional feature can not be deselected if it has a selected dependent 

feature. 

Action: Message appears ("Feature cannot ·be deselected. Dependent Features 

must be deselected first"). 

• Rule 10: An alternative feature cannot be deselected if it has a selected dependent 

feature. 

Action: Message appears ("Feature cannot be deselected. Dependent Features 

must be deselected first"). 

• Rule 11: An alternative feature cannot be selected if one of the other alternatives 

in the set of related alternatives is selected. Alternatives are mutually exclusive. 

Action: Only one of the set of related alternative features is selected. The other 

alternative features will be set to false. 

6.2.2.3 Customizati~n File Generator component 

This component is responsible for generating a customization file automatically for each 

target application. The customization file is required for the customization process of 

client applications, described in Chapter 5 section 5.2, 5.4, and 5.5 (DCAC, DCAC-SC, 

and SCAC patterns). The three customization methods depend on this file. This 

component relies on the Feature Selector component, which sets feature selection status 



www.manaraa.com

169 

to true/false and stores values of parameterized variables in the TargetSystemsFeatures 

table and the TargetSystemVar table of the SPLmodel database. 

Figure 6-29 shows the graphical user interface for this component. 

Figure 6-29 Customization File Generator component 

Figure 6-30 shows the entity class diagram for the customization file. It consists of the 

following tables: 

Feature: Stores all feature names and their selection status (YIN). 

Variable: Stores values of all parameterized variables grouped by feature name. 



www.manaraa.com

170 

Feature Variable 

- feature: String 
1 Has.- 0 .. " 

- feature: String 
- selection: Boolean - varNa me: String 

- varText: String 

Figure 6-30 Entity Oass Diagram - Customization File 

Figure 6-31 shows the sequence diagram for generating a customization file for a target 

application. 

SPL feature model Cus1Dmization file 

Customization File I I <<entity» I «entity» I «entity» <<entity» 
Generator . :Iarge!§vsteI!§Elilaturlil . 'Iarget~stemVii![ ;futym :Variable 

I 1 Select target I appllcallOl1 Request target application 
remea reawresmro 

Feature info I 
Request target application related variables info 

I Target application r ~variables 

I 
Requestcreation of I cueromzation file Store larAet application related feature info 

Store tarAet application 61ated variables info 
I 
I , 

Figure 6-31 Customization File Generation 

The following explains the process of generating a customization file for a specific target 

application: 

• Application engineer selects a customized target application. 



www.manaraa.com

171 

• Customization File Generator reads the related feature information of the selected 

target application from the TargetSystemsFeature table of the SPL model 

database. 

• Customization File Generator reads the related parameterized variable 

information of the selected target application from the TargetSystemVar table of 

the SPL model database. 

• Application engineer requests the creation of the customization file. 

• Customization File Generator inserts feature names and their selection status of 

selected target application into the Feature table of the customization file. 

• Customization File Generator inserts parameterized variables information of 

selected target application into the VariabIe table of the customization file. 

6.2.3 Separation of concerns and source code integration subsystem 

This subsystem is used to establish separation of concerns and integrate variable source 

code with kernel source code. It consists of three components: Variable Source Code 

Editor, Code Tracker, and Code Weaver. Figure 6-32 shows the subsystem and the 

interaction between its components and related files. The following sections describe in 

detail each component in the subsystem. 



www.manaraa.com

Separation of 
concems& 
Integration 

components 

Target system 
Customization file 

Figure 6-32 SPLET - Separation of Concerns & Code Weaving 

6.2.3.1 Variable Source Code Editor Component 

172 

SPlkemel 
source files 

This component is used to relate optional and alternative source code to features for the 

purpose of establishing separation of concerns between variable source code and kernel 

source code. Each feature in the feature tree has a related variable source code file that is 

created and manipulated internally using the SPLET prototype. Features that interact with 

other features have separate variable files. The individual variable files are composed 

automatically into a single variable source code file that is used by the code weaver 

component to integrate variable source code with kernel source code according to the 

customization methods, described in the DCAC-SC and SCAC patterns in Chapter 5. The 

file structuring, manipulation, and the composition of variable source code files into one 

variable file are done internally in SPLET. Users interact with the user friendly interfaces 

to create all variable source code. 

This component consists of three major functions: 



www.manaraa.com

173 

• Single-feature source code generation: This function is used for relating variable 

source code to a single feature. Each feature has one file that stores all related 

I 

variable source code. Each block of variable source code in this file is identified 

by an insertion point name. 

• Multi-feature source code generation: This function is used when a feature has to 

interact with other features. Every set of interacting features has one file that 

stores all related variable source code. Each block of variable source code in this 

file is identified by an insertion point name. 

• Composed variable file generation: This function is used to compose all 

individual files into a single variable file. The code weaver component reads this 

file in the integration process. 

The following sections explain each function in detail. 

6.2.3.1.1 Single feature source code generation 

Figure 6-33 shows the graphical user interface used to create variable source code for 

each feature. 



www.manaraa.com

174 

$START BIockRcdl.-ron 

Figure 6-33 Variable Source Code Editor - Single Features 

Figure 6-34 shows the sequence diagram for creating feature related variable source code. 

SPlengit 

Variable Source Single Feature Variable Kernel Source Code 
eer Code Editor Source Code File 

Select feature and load 1 
related kernel code ' Create a new single 

vanaDle cooe me 

Insert variable 
Store variable source code source code 

Add insertion 
POIntS Add insertion points 

Figure 6-34 Single Feature Variable Source Code File Creation 



www.manaraa.com

175 

The following explains the process: 

• SPL engineer selects a feature to add its variable source code. 

• Variable Source Code Editor component creates a new single feature variable 

source code file or loads an existing file. 

• Variable Source Code Editor component creates a predefined template in the 

single feature variable source code user interface with the appropriate SPLET 

commands. SPLET commands are described in detail in Chapter 5 sections 5.4 

and 5.5 (DCAC-SC and SCAC patterns). The following is a sample template for 

BlockCheckin feature: 

$FEATUREfBlockCheckinj 

$START Insertion Point Name 
- -

/ / insert variable saurce code here 

$f,ND Insertion_Point _Name 
$ENDFEATUREfBlockCheckinj 

• The Insertion _Point_Name is replaced with the actual insertion name. 

• Variable source code is inserted after the $START command line. 

• In the kernel source code, the insertion point name is inserted at the location 

where the variable source code is expected to be merged in the integration 

process. 



www.manaraa.com

176 

• The code weaver component decides on which optional or alternative source code 

is expected to be integrated with the kernel source code, described later in the 

Code Weaver component. 

6.2.3.1.2 Multi feature source code generation 

Figure 6-35 shows the graphical user interface used to create variable source code for 

each feature. 

$START BIockRes8u11on 

$START RoomResidenIialJl 

. ole void bultonJ Cick(object oender S i - -Y 
Form.ActiveFonn.CIo...o ; 

private voidbult0n4_Cick(objecl serder. Sy 
( 

) 
~Ed{); 

. ale void bult0n2 Cick(object render S i - . y 

Figure 6-35 Variable Source Code Editor - Multi Features 



www.manaraa.com

177 

Figure 6-36 shows the sequence diagram for creating multi features related variable 

source code. 

SPlengo>eer 

Variable Source Multi Feature Variable Kernel Source Code Code Editor Source Code File 

Select feature and load 1 
related kemel code Create a new single 

vanable code file 

Insert variable store variable source code source code 

Add insertion 
points Add insertion points 

Figure 6-36 Multi Feature Variable Source Code FUe Editor 

The process in figure 6-36 is the same as the single feature source code generation 

process, described in section 6.2.3.1. However, the predefined template in the multi 

feature variable source code user interface uses different SPLET commands. SPLET 

commands are described in detail in Chapter 5 sections 5.4 and 5.5 (DCAC-SC and 

SCAC patterns). The following is a sample template for RoomReservation and 

ResidentialReservation features: 

$FEATUREINTERACTION{RoomReservation, ResidentialReservationJ 
$START Insertion Point Name 

II insert variable source code here 

$END Insertion Point Name - -

$ENDFEATUREINTERACTION[RoomReservation, ResidentialReservationJ 



www.manaraa.com

178 

6.2.3.1.3 Composed variable source code file generation 

Figure 6-37 shows the graphical user interface used to create a composed source code 

variable file from all the individual variable source code files. The generated variable 

source code file is used by the Code Weaver component to integrate variable source code 

with kernel source code. 

Figure 6-37 Variable Source Code Editor - Composed Features 



www.manaraa.com

179 

Figure 6-38 shows the sequence diagram for creating the variable source code file. 

SPI._ I Variable Source I IS_F_V'_~ IM~"""V_W I Variable Source 
Code Editor Source Code Rle Source Code File Code File 

Request creation of J 
variable source code file Read variable source code 

in each file 
Copy variable source code 

Read variable source code 
in each file 

Copy variable source code 

Figure 6-38 Creation of Variable Source Code File 

The following explains the process: 

• SPL engineer requests from the Variable Source Code Editor component to 

generate a variable source code file. 

• Variable Source Code Editor component reads variable source code in each 

Single Feature Variable Source Code File and copies the read variable source 

code into the composed Variable Source Code File. 

• Variable Source Code Editor component reads variable source code in each Multi 

Feature Variable Source Code File and copies the read variable source code into 

the composed Variable Source Code File. 

• A composed variable source code file is generated. 



www.manaraa.com

180 

6.2.3.2 Code Tracker 

Insertion point names can grow large in number and need a facility to locate them in both 

the variable files and their corresponding insertion point names in the kernel source code. 

The Code Tracker component in Figure 6-39 is used for this purpose. The code Tracker 

component can track insertion point names in two ways: 

• Feature tracking: Tracks all insertion point names by feature name or interacting 

features. The dropdown list of features contains all single feature names and multi 

feature names. Multi feature names represent interacting features. They are 

combined between two brackets. For example, RoomReservation feature and 

ResidentialReservation feature are two interacting features that are created with 

the Variable Source Code Editor component. The dropdown list shows these two 

interacting features as: 

{RoomReservation, ResidentialReservationJ 

• Insertion name tracking: Tracks a specific insertion point name in all kernel 

source code files and shows·its related feature or interacting features. 



www.manaraa.com

181 

Figure 6-39 Code Tracker 



www.manaraa.com

182 

Feature tracking: 

Figure 6-40 shows the sequence diagram for tracking feature related insertion points and 

their location in the kernel source code files. 

s I Code Tracker I I_F ..... V __ ~ I-...... V·-W Kemel Source Code I P1._, Source Code Rle Source Code File 

SelecUeature 1 
Read fealu"e related Insertion,. 

point names in each ftle 

Read 1Ieature related insertion 
point names In each file 

Read feature related Insertion 
point names in each file 

DispIa~ feature related 
insertion point names and 

their locations 

Figure 6-40 Tracking of feature related insertion points 

The following explains the process: 

• SPL engineer selects a feature or a set of interacting features. 

• Code Tracker component reads feature related insertion point names in the Single 

Feature Variable Source Code file. 

• Code Tracker component reads feature related insertion point names in the Multi 

Feature Variable Source Code file. 

• Code Tracker component reads feature related insertion point names in the kernel 

source code files. 

• Code Tracker component displays all feature related insertion point names. 



www.manaraa.com

183 

• Code Tracker component displays all kernel source code files that contain each 

insertion point name and the location (line number) of each insertion point in the 

kernel source code file. 

Insertion name tracking: 

Figure 6-41 shows the sequence diagram for tracking a specific insertion point name in 

the kernel source code files and its related feature or interacting features. 

I Code Tracker I 1~"'''''''v'''"*1~ I Multi Feature Variable ~ I Kemel Source Code I - Source Code File Source Code File 

Enler specific insertion 1 
point name Read Insertion point names in... 

each file 

Read insertion point names in 
each file 

Read insertion point names in 
each file 

Display related Jealure to 
the insertion point name 

and its locations 

Figure 6-41 Tracking of specific insertion point name 

The following explains the process: 

• SPL engineer enters a specific interaction point name. 

• Code Tracker component reads the insertion point name in all Single Feature 

Variable Source Code files. 

• Code Tracker component reads the insertion point name tn all Multi Feature 

Variable Source Code files. 



www.manaraa.com

184 

• Code Tracker component reads the insertion point name in all kernel source code 

files. 

• Code Tracker component displays the insertion point name related feature or 

interacting features. 

• Code Tracker component displays all kernel source code files that contain the 

insertion point name and its location (line number) in the kernel source code files. 

The tracked information is used to locate variable source code in their corresponding 

variable source code files and kernel source code. This information helps users to make 

necessary modifications and updates to the SPL ·application using the Variable Source 

Code Editor component. 



www.manaraa.com

185 

6.2.3.3 Code Weaver 

The Code Weaver is built to support the integration process that is described in the 

Dynamic Client Application Customization with Separation of Concerns (DCAC-SC) 

and the Static Client Application Customization (SCAC) approaches in Chapter 5 

sections 5.4 and 5.5. It is responsible for integrating kernel source code with optional and 

alternative source code using the automatically composed variable source code file and 

feature selection. Figure 6-42 shows the main user interface of the Code Weaver 

component. 

Figure 6-42 Code Weaver 



www.manaraa.com

186 

For the dynamic approach of DCAC-SC, Figure 6-43 shows the overall integration 

process. In this integration method, all optional and alternative source code from the 

variable source code file is integrated with kernel source code. The integrated source 

code is then compiled to produce a SPL application that can be dynamically customized 

at run time. The integrated SPL application is customized after the code weaving and 

compilation processes. The Feature Selector, Consistency Checker, and Customization 

File Generator components under the Customization subsystem are used to customize 

target applications, described in section 6.2.2.1, 6.2.2.2, and 6.2.2.3 . 

Kernel source code 

Class A Class B ClassC 

SPL cliert 
application 

source code 

Compiler 

Variable source code 

I I 

Variable 
source 

code file 

Exect.dable 
~------------~~ ~e 

Figure 6-43 Dynamic integration 



www.manaraa.com

187 

Figure 6-44 shows the sequence diagram for the integration process of kernel source code 

with variable source code using the Code Weaver component with the OCAC-SC 

approach. 

Application 
engileer 

Dynamic Code 
Weaver 

Kemel Source 
Code File 

Variable Source 
Code File 

Request code 1 
----'-'i:i nt±e==gr:::,atii::-·on~---1 .. ~1 Read insertion point names in" 

each file 

Read SOlJ"ce code bIocIcs 
related to Insertion POint names 

Insert source code blocks 
related to insertion point names 

Figure 6-44 Code Weaving for DCAC-SC Method 

The following explains the process: 

• Application engineer requests integration of kernel source code with variable 

source code using the dynamic method of integration (DCAC-SC method). 

• Dynamic Code Weaver component reads insertion point names in kernel source 

code files, which correspond to join points in Aspect Oriented Programming. 

• When an insertion point is located in the kernel source code file, the dynamic 

Code Weaver component reads the variable source code file to locate the 

corresponding insertion point name, 



www.manaraa.com

188 

• The variable source code block that is related to the found insertion point name is 

integrated with kernel source code at the specified location in the kernel source 

code. 

For the: static approach of SCAC, Figure 6-45 shows the overall integration process. In 

this integration method, only selected optional and alternative feature related source code 

blocks are integrated with kernel source code. Therefore, in order for the dynamic code 

weaver component to perform the integration, the customization process of selecting 

desired : features is performed before the integration process. The Feature Selector, 

Consistency Checker, and Customization File Generator components under the 

Customization subsystem are used to generate a customization file of selected features to 

be used by the dynamic code weaver to make decisions on which variable source code 

blocks to include or ignore. After the integration process is complete, the integrated 

source code is the compiled to produce an executable customized target application. 



www.manaraa.com

Kernel source code 

Class A ClassB ClassC 

Target System 
Source Code 

Compiler 

Variable source code 
I I 

Variable 
source 

code file 

Customizaticn file 

Figure 6-45 Static integration 

Executable 
code 

189 

Figure 6-46 shows the sequence diagram for the integration process ofkemel source code 

with variable source code. 

~ 
I 

Static Code 

II 
Kernel Source W I Variable Source 

I I 
Customization File 

I .;:' Weaver Code File Code File 

Request code 1 
integration Read insertion point names in.. 

each file 

Read source code blocks 
rela1ed to insertion point names 

Verify feature seleclion --
Insert source code blocks 

reIa1ed to insertion point names 

Figure 6-46 Code Weaving for SCAC Method 



www.manaraa.com

190 

The following explains the process: 

• Application engineer requests integration of kernel source code with variable 

source code using the static method of integration (SCAC method). 

• Static Code Weaver component reads insertion point names in kernel source code 

files. 

• When an insertion point is located in the kernel source code file, the Code Weaver 

reads the variable source code file to locate the corresponding insertion point 

name. 

• Static Code Weaver component consults the customization file to verify feature 

selection. 

• If the feature is selected, the Static Code Weaver integrates variable source code 

block with kernel source code at the specified insertion location in the kernel 

source code. 

• If the feature is not selected, the Static Code Weaver ignores the integration of 

variable source code block with kernel source code. 

Figure 6-47 shows two sample variable files that are generated by the Variable Source 

Code Editor component. The Code Weaver component reads the generated variable file 

and applies the selected integration method in the integration process. 



www.manaraa.com

statIC feature file 

,FEATUREINTERACTION(RoomR_rvatlon,ResidenllalReservatlon] 

,START MalnReHrveTltle 
,IF FEATURE(RoomR..ervatlon] 

MainReUITiIle = "Main Room Reservation" ; 
'ELSEIFFEATURE[ResidentIaIReservatlon] 

MainReUlTiIle = "Main Residential Reservation" ; 
$ENDIF . 

,END MalnReserveTltle 

1111111111111111 

$START ROomResldenllalUI 

$IF FEATURE(RoomReHIYaIIon) II AlIemative feature 
RoomReservallonl rc = new RoomReservation~) ; 
rc.SIlow(); 

$ELSEIF FEATURE{ResldentialReservatlonl II Aiternati'ie fealUle 
R_nlialReS8lVaIIonl rs = new ReSideniialReservationl() ; 
rs.Show() ; 

$ENDIF 

,END RoomResidentialUI 

$ENDFEATURElNTERACTION(RoomReservatlon,ResklentIalReHrvatIon) 

1111111111111111111#111111111111111111111111111111111111111111111111//11111111111111111111//1111111//111//1I111//HII 
$FEATURE(BlockReservatlon) // OptIonal Feature 

$START BIockResButton 
Ilcreate iBIocI< reservation button 
blocl<Res_buIIon.vlslble = true; 

.END BIocResBuUon 

,START BIockResUI 
blockReservalion br = new bIockReservation() ; 
br.Show(); 

.END BlockResUI 

$ENDFEATURE{BlockReHrvatlon] 

Dynamic feature fUe 

,FEA TUREINTERACTION [RoomReservatlon,ResklentialReserYatlon) 

$START MainReserveTHle 

if( roomRes == ''y'' ) 
MainReUlTotie = "Main Room Reservation" ; 

elseif ( residRes == "y") 
MainReUlTotie = "Main Residenllal Reservation" ; 

$END MaInReserveTltle 

//11//1111111////11111//1111 
$START RoomR_nlIaIUI 

if( roomRes == "Yj 
{ 

} 

// Display RoomReservationUl 
RoomReservationi rc = new RoomReservationl() ; 
rc.Show() ; 

else if( residRes == "Y"} 
{ 

I 

// Display ResideniialRese!VaIIonUl 
ResidentialReservationl rs = new ResideniialReservationl() ; 
rs.Show(); 

,END RoomResidentlaJUI 

191 

,ENDFEATUREINTERACTION (RoomReservatlon,ResldeftUaiReservatlon] 

1I11//1I//IIIII////IIIIIII//IIIIIII//IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII18/lUII/H//ll 
,FEA TURE{BlockReservatIon) 

$START BIockResButton 
I (bIockRes = "Y") 
{ 

} 

II Create block reservation butIDn 
bIockRes_buIton.visible = true; 

$END BlocResBuUon 

$START BlockResUI 
U (biockRes == "Yj 
{ 

bIockReservalion br = new blockReservalion() ; 
br.Show() ; 

$EJD BlockResUI 

'ENDFEATURE(BlockReservatlon] 

Figure 6-47 Samples of Variable File 

6.2.4 Utility subsystem 

The utility subsystem consists of the File Extractor component. It is used as a supporting 

tool for retrieving analysis, designs, source code files, and test procedures for target 

applications; Figure 6-48 shows the Utility subsystem. 



www.manaraa.com

Utility 

~ 
~ 

Read inks to artifac1s 

- Selected analysis 
- Selected design 

I<Fitejmr'ador;~~~~~~ - Selected components 
- Selected Test procedures 

Figure 6-48 SPLET - Utility 

Figure 6-49 shows the main user interface of the File Extractor component. 

Figure 6-49 File Extractor utility 

192 



www.manaraa.com

193 

File eXtraction is based on the Feature Editor and Feature Selector components. The 

Feature Editor allows users to enter links to files/diagrams that are related to each feature 

in the Diagram table of the SPL model database. Files are categorized in the Diagram 

table as: specifications, analysis, design, source code, tests, and other. The File Extractor 

utility creates sub-directories in the destination path for each category type. It then 

copies files of checked category types of selected target application in their related sub

directories. The File Extractor utility consults the TargetSystemsFeature table in the SPL 

model database to verify feature selection. Only files related to selected features of a 

target application are copied into their corresponding directory. 

6.3 Validation 

This research is validated through two case studies using a product line independent 

proof-of-concept prototype (SPLET). The two case studies apply the software product 

line service-oriented development approach to the design, development and 

customization of the proposed architecture and implementation. The two case studies are: 

• Hotel Product Line 

• Radio Frequency Management Product Line 

6.3.1 Validation process 

a) Developed a product line proof-of-concept prototype to (SPLET), which supports the 

design, development, and customization of software product lines that are based on 

web services. The SPLET prototype covers the life cycle of software product lines 



www.manaraa.com

194 

from the SPL engineering phase to the application engineering phase. The SPLET 

prototype was used as follow: 

• In the SPL engineering phase, SPLET was used in the two case studies to 

create a SPL feature model and associate web service components and 

artifacts (specifications, design models, test files, source code) to their related 

features. 

• In the application engineering phase, SPLET was used in the two case studies 

to select desired features, run consistency checking rules, and customize target 

applications using all of the three development approaches. 

• The two case studies applied the proposed methods of separation of concerns 

and source code integration of variable source code and kernel source code 

according to the DCAC-SC and SCAC patterns. 

b) Designed the two SPL case studies according to the proposed design approach. The 

design included the following multiple-view models: 

• Use case modeling: Captures the overall software product line requirements. 

• Feature modeling: A feature dependency model was derived from the use case 

model. The feature model was used to depict the kernel, optional, and 

alternative features in the SPL application. 

• Entity class modeling: was used to depict the needed input when developing 

web services. 



www.manaraa.com

195 

• User interface navigation modeling: Shows the navigation between kernel, 

optional, and alternative use.- interface objects. 

• Interaction modeling: Describes the interaction between the user interfaces 

and web services. 

• Activity modeling: Describes the workflow of each user interface object. 

• Software architecture modeling: Identifies the required web services and their 

input and output. 

• Component interface modeling: Objects from the interaction model are 

designed as components in terms of their interfaces and interconnections. User 

interface components communicate with web services and each other through 

ports, which support provided and/or required interfaces 

c) Implemented three prototypes for each case study to validate the three development 

approaches described in this research. The two case studies were implemented 

according to: 

• Dynamic client application customization (DCAC) 

• Dynamic client application customization with separation of concerns 

(DCAC-SC). 

• Static client application customization with separation of concerns (SCAC). 

d) Derived target applications from the SPL architecture and components. Each SPL 

implementation of the two case studies was customized to derive two target 

applications. 



www.manaraa.com

196 

e) Each derived target application was tested using conventional functional testing 

methods to verify the correct customization and execution of derived applications. 

6.4 Summary 

This chapter has described the Software Product Line Environment prototype (SPLET) as 

a proof of concept for this research. SPLET is designed to be a product line independent 

prototype that covers the product line life cycle, which includes the software product line 

engineering phase and the application engineering phase (SPL customization). SPLET is 

based on dividing a SPL application into features that are categorized as keme~ optional, 

and alternative. Features are the main driver for organizing SPL components and 

customizing target applications. The SPLET prototype helps in visualizing the overall 

SPL system by providing a flexible navigation facility through the SPL model, and 

provides the needed facilities to customize target applications. It consists of four 

subsystems: software product line environment, customization, separation of concerns, 

and supporting utility. 

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

197 

7. CONTRIBUTIONS AND FUTURE RESEARCH 

7.1 Introduction 

This dissertation has developed an approach for designing a Software Product Line (SPL) 

based on web services. It addressed the unique issues of using the web service technology 

in the designing approach. This research also described three software development 

environments to develop the proposed product line design and support the automatic 

customization of SPL architecture and components. The three approaches followed the 

same design architecture, but differed in how separation of concerns is used for software 

development and customization. Each development approach was implemented with 

specific consideration to one of the customization methods described in this research. The 

design, development, and customization methods were supported by a product line 

independent customization prototype to help developers and application engineers to 

create a customizable SPL application and generate target applications automatically 

from the reusable service-oriented product line. 

7.2 Research Contribution 

This research has focused in designing, developing, and customizing software product 

lines that are based on web services. A proof-of-concept prototype was developed to 

cover the software product line life cycle from the SPL engineering phase to the 

Software Product Line Engineering Based on Web Servicesالعنوان:

Saleh, Mazen M. Aquilالمؤلف الرئيسي:

Gomaa, Hassan(Super.)مؤلفين آخرين:

2005التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

:MD 618453رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

البرمجيات، الإنترنت، تقنية المعلومات، هندسة الحاسباتمواضيع:

https://search.mandumah.com/Record/618453رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618453


www.manaraa.com

197 

7. CONTRIBUTIONS AND FUTURE RESEARCH 

7.1 Introduction 

This dissertation has developed an approach for designing a Software Product Line (SPL) 

based on web services. It addressed the unique issues of using the web service technology 

in the designing approach. This research also described three software development 

environments to develop the proposed product line design and support the automatic 

customization of SPL architecture and components. The three approaches followed the 

same design architecture, but differed in how separation of concerns is used for software 

development and customization. Each development approach was implemented with 

specific consideration to one of the customization methods described in this research. The 

design, development, and customization methods were supported by a product line 

independent customization prototype to help developers and application engineers to 

create a customizable SPL application and generate target applications automatically 

from the reusable service-oriented product line. 

7.2 Research Contribution 

This research has focused in designing, developing, and customizing software product 

lines that are based on web services. A proof-of-concept prototype was developed to 

cover the software product line life cycle from the SPL engineering phase to the 



www.manaraa.com

198 

application engineering phase. The main contributions of this research effort are as 

follows: 

a) This research effort has developed a multiple-view modeling approach, which 

extends the Product Line UML-based Software Engineering environment (PLUS) to 

address the unique issues related to web services. The multiple-view model defines 

the different characteristics of a service-oriented software family, including the 

commonality and variability among the members of the family. In the design 

approach, several multiple-view models are created specifically for a software 

product line service-oriented architecture, including user interface navigation 

modeling, interaction modeling, activity modeling, software architecture modeling, 

and component interface modeling. 

b) A major contribution of this research effort is the design of the three software 

development environments to support the automatic customization of SPL service

oriented architecture and components. The three approaches are: 

• Dynamic client application customization (DCAC): This approach provides an 

automated customization method of target applications at system run time. 

Product lines are automatically customized by selecting desired features and 

entering values of parameterized variables to satisfy the execution of a 

specific target application. Selected features and parameters are stored in · a 

customization file that is used by the target application objects to customize 

the client application user interfaces and their workflows at system run time. 



www.manaraa.com

199 

The benefits of reuse can be achieved by deriving many target applications 

from the customizable SPL application without the need to modify any of the 

source code. 

• Dynamic client application customization with separation of concerns 

(DCAC-SC): The second development approach is an extension to the first 

method (DCAC) to include separation of concerns, where optional and 

alternative source code is separated from kernel source code into a variable 

source code file. During source code integration, the variable source code file 

is used to integrate kernel source code with optional and alternative source 

code .. The result of the integration process is a combined set of source code for 

the entire software product line, including all optional and alternative source 

code. The source code integration process and compilation are performed only 

once to generate a customizable SPL application at system run time. Target 

applications will rely on the dynamic client application customization, which 

is identical to that produced by the first approach (DCAC). 

Separation of concerns is used to reduce complexity of developing software 

product lines and improve system maintenance by uniquely identifying 

variable source code and kernel source code. Variable source code can be 

manipulated separately within the SPL environment then automatically 

integrated with kernel source code. 



www.manaraa.com

200 

• Static customization of client application with separation of concerns (SCAC): 

This approach is based on static customization of application objects at system 

derivation time. Client objects are customized by integrating kernel source 

code with only the selected optional and alternative source code from the 

variable source code file. With this approach, there is no customization at 

system run time. Using the static customization approach, the target 

application's source code is derived automatically from the SPL architecture 

and components. This approach is suitable for SPL applications that require 

distribution of only needed target application source code. 

c) Another major contribution of this research is the development of a product line 

independent proof-of-concept prototype (SPLET), which supports the design, 

development, and customization of software product lines that are based on web 

services. SPLET covers the entire life cycle of software product lines from the SPL 

engineering phase to the application engineering phase. 

• In the SPL engineering phase, SPLET enables SPL engineers to create a SPL 

feature model and associates web service components and artifacts 

(specifications, design models, test files, source code) to their related features. 

• In the application engineering phase, SPLET provides facilities that enables 

application engineers to select desired features, run consistency checking 

rules, and customize target applications using one of the three development 

approaches. 



www.manaraa.com

201 

• Provide the necessary tools to establish separation of concerns between 

variable source code and kernel source code with the facility to integrate them 

according to one of the integration methods described in the DCAC-SC and 

SCAC patterns. 

d) Another contribution of this research is the development of a feature-based 

description language for separation of concerns. This language is used to identify 

optional and alternative source code for creating the variable source code file, which 

is used by the code weaver component in the separation of concerns subsystem of the 

SPLET prototype to integrate kernel source code with variable source code according 

to the dynamic integration method ofDCAC-SC or the static method of SCAC. 

e) Another contribution of this research is the development of a code integration engine 

(code weaver component in SPL T) that is able to interpret the developed feature

based description language to integrate kernel source code with variable source code 

according to the dynamic or static customization methods. 



www.manaraa.com

202 

7.3 Future Research 

This section describes possible future research in the area of software product line based 

on web services. 

7.3.1 Testing of software product lines 

This research has developed a method for integrating variable source code with kernel 

source code to produce a SPL application that is configured for dynamic customizationat 

run time or a target application that is customized statically at source code integration 

time. There is a need to generate feature related test procedures to verify the integration 

and customization of target applications. 

7.3.2 Transaction of web services using customizable workflows 

This research focused on designing, developing, and customizing web service-based SPL 

applications. A possible future work in this area can be conducted to ensure that 

customizable workflows produce a successful business transaction, especially keeping 

track of transactions that require different inputs to and outputs from several loosely

coupled web service components. 

7.3.3 Performance of SPL applications based on web services 

This research has introduced three development approaches for software product lines 

based on web services. Performance issues were not addressed in this research. A 

possible future work can be pursued to measure performance level and reliability of using 

web services in a customizable service-oriented architecture. Also, Performance 



www.manaraa.com

203 

measurement and reliability of the Internet usage of web services can be compared with 

other component-based applications using CORBA or DCOM middleware. 

7.3.4 Evolution of SPL applications based on web services 

The issue of evolution of SPLs based on web services is not addressed in this research 

effort A study can be conducted to investigate the different possibilities to evolve the 

customizable SPL system with minimum change to the original source code. 

7.4 Summary 

This dissertation has focused on designing, developing, and customizing web service

based SPL applications. This research addressed the unique issues of using web services 

in the designing approach. It also described three different development approaches to 

develop the proposed product line design. A domain independent proof-of-concept 

prototype was developed to support the ideas presented in this research. The design, 

development, and customization approaches were applied to two case studies: Hotel 

System and Radio Frequency Management System to validate this research. The 

contributions of this research effort were described in this chapter. 

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

IV 

TABLE OF CONTENTS 

Page 

ABSTRACT ........................................................................... XI 

1 .. INTRODUCTION ............................... · ................................................... 1 
1.1 Background ... ........................ .. ..... ......... .......................... ..................... ... .. ................................ 1 

1.2 Research Problem and Approach .. ..................... .......................... ........... ............................. 2 

1.3 Importance and Rationale of This Research .. .. .. .... .................. .................. ...... .. ..... ........... 3 

1.4 Terminology ... .. .... ..... .. .... .... ....... ................... .. ... ... ....... .......... ... .................. ....................... ... ... . 3 
1.5 Organization ........... ......... .. .................... ............... ........... .. .. .. ......... ..................... ............. ... ..... 5 

2. RELA TED WORK ................................................................................ 6 
2.1 Introduction ................................ ....... ................................. ...... .. .. ......................... 6 
2.2 Software Product Lines .......... ....... ..... ................................ ...... ... ....................... .. .. 6 
2.3 Evolutionary Software Product Line Engineering Process ..... ......... ...... ........ .. ... ... .. 7 
2.4 Multiple-View Models of Software Product Lines .......................... .. .. .......................... 8 

2.4.1 Use Case Model for Software Product Lines ...... ..... ... ... ... .. ....... : ..... .. .. .. .. ........ 9 
2.4.2. Feature Analysis for Software Product Lines .. ............ .. .... .. .......... .. .. .. .. ...... .. .. 9 
2.4.3 Static Model for Software Product Lines .... ...... .................... .. ............ .. .. .. .. ... 10 
2.4.4 Collaboration Model for Software Product Lines ..... .. ...... .. ...... .. .. .. ........... .. .. 11 

2.5 Other Software Product Line Engineering Methods ............................................. 12 
2.5.1 Feature-Oriented Domain Analysis (FODA) ................. .. ... ........................... 12 
2.5.2 Reuse-driven Software Engineering Method (RSEB) ................ .................. .. 13 
2.5.3 FAST ...... .. .............. .. .... ......... ............. ................ .. ...... .. .... ..... .. .................... . 13 
2.5.4 KobrA .. .... .. .. .. .. .. .. .. .. .......... .. ....... .. ..... ....... ... ..... ........... ... . , ... .... .... .. ... ............ 14 
2.5 .5 Knowledge-Based Requirement Elicitation Tool (KBRET) .... .. ...... .. ...... .... ... 14 
2.5 .6 Web-Based Software Product Lines ....... .... ........ ...... ... .. .......... .. ..... ........ .. ..... 15 

2.6 Component-Based. Software Engineering ......... ........ ................................ ... .. .................. 16 

2.7 Web Services ................ ...... .... ........................... .. .............................. .. ........ ........................... 19 

2.7.1 Advantages of Web Services ...... ... ........................ ... ....... ..... .. ...................... . 20 
2.7.2 Disadvantages of Web Services ......... ................. ........ .... .... ........ ................... 21 
2.7.3 Service-Oriented Architecture ... ............................... ... ..... .... ......................... 21 

2.8 Aspect-Oriented Programming ............................................ .. ................ ............................. 22 

2.9 Frame Technology .. ... .. ...... ............................... ..... .......... ...................... ........... ..................... 24 

2.10 Summary ........ ..... ... ........ .... ......... .. .. .. ........ .. ... ............ .................. ........ .... .. .... .. .... .. .. .. .......... . 26 

Software Product Line Engineering Based on Web Servicesالعنوان:

Saleh, Mazen M. Aquilالمؤلف الرئيسي:

Gomaa, Hassan(Super.)مؤلفين آخرين:

2005التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

:MD 618453رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

البرمجيات، الإنترنت، تقنية المعلومات، هندسة الحاسباتمواضيع:

https://search.mandumah.com/Record/618453رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618453


www.manaraa.com

IV 

TABLE OF CONTENTS 

Page 

ABSTRACT ........................................................................... XI 

1 .. INTRODUCTION ............................... · ................................................... 1 
1.1 Background ... ........................ .. ..... ......... .......................... ..................... ... .. ................................ 1 

1.2 Research Problem and Approach .. ..................... .......................... ........... ............................. 2 

1.3 Importance and Rationale of This Research .. .. .. .... .................. .................. ...... .. ..... ........... 3 

1.4 Terminology ... .. .... ..... .. .... .... ....... ................... .. ... ... ....... .......... ... .................. ....................... ... ... . 3 
1.5 Organization ........... ......... .. .................... ............... ........... .. .. .. ......... ..................... ............. ... ..... 5 

2. RELA TED WORK ................................................................................ 6 
2.1 Introduction ................................ ....... ................................. ...... .. .. ......................... 6 
2.2 Software Product Lines .......... ....... ..... ................................ ...... ... ....................... .. .. 6 
2.3 Evolutionary Software Product Line Engineering Process ..... ......... ...... ........ .. ... ... .. 7 
2.4 Multiple-View Models of Software Product Lines .......................... .. .. .......................... 8 

2.4.1 Use Case Model for Software Product Lines ...... ..... ... ... ... .. ....... : ..... .. .. .. .. ........ 9 
2.4.2. Feature Analysis for Software Product Lines .. ............ .. .... .. .......... .. .. .. .. ...... .. .. 9 
2.4.3 Static Model for Software Product Lines .... ...... .................... .. ............ .. .. .. .. ... 10 
2.4.4 Collaboration Model for Software Product Lines ..... .. ...... .. ...... .. .. .. ........... .. .. 11 

2.5 Other Software Product Line Engineering Methods ............................................. 12 
2.5.1 Feature-Oriented Domain Analysis (FODA) ................. .. ... ........................... 12 
2.5.2 Reuse-driven Software Engineering Method (RSEB) ................ .................. .. 13 
2.5.3 FAST ...... .. .............. .. .... ......... ............. ................ .. ...... .. .... ..... .. .................... . 13 
2.5.4 KobrA .. .... .. .. .. .. .. .. .. .. .......... .. ....... .. ..... ....... ... ..... ........... ... . , ... .... .... .. ... ............ 14 
2.5 .5 Knowledge-Based Requirement Elicitation Tool (KBRET) .... .. ...... .. ...... .... ... 14 
2.5 .6 Web-Based Software Product Lines ....... .... ........ ...... ... .. .......... .. ..... ........ .. ..... 15 

2.6 Component-Based. Software Engineering ......... ........ ................................ ... .. .................. 16 

2.7 Web Services ................ ...... .... ........................... .. .............................. .. ........ ........................... 19 

2.7.1 Advantages of Web Services ...... ... ........................ ... ....... ..... .. ...................... . 20 
2.7.2 Disadvantages of Web Services ......... ................. ........ .... .... ........ ................... 21 
2.7.3 Service-Oriented Architecture ... ............................... ... ..... .... ......................... 21 

2.8 Aspect-Oriented Programming ............................................ .. ................ ............................. 22 

2.9 Frame Technology .. ... .. ...... ............................... ..... .......... ...................... ........... ..................... 24 

2.10 Summary ........ ..... ... ........ .... ......... .. .. .. ........ .. ... ............ .................. ........ .... .. .... .. .... .. .. .. .......... . 26 



www.manaraa.com

v 

3. PROBLEM STATEMENT AND RESEARCH APPROACH ............ 27 
3.1 Introduction ............................................................................................................................. 27 

3.2 Problem Statement ................................................................................................................ 28 
3.3 Research Approach ............................................................................................................... 28 
3.4 Design Method for Software Product Line Service-Oriented Architecture .............. 30 

3.5 Development Environments ................................................................................................ 31 

3.6 Proof-of-oncept Development Environment... ................................................................. 34 

3.7 Validation ................................................................................................................................ 37 

3.8 Comparison with Other Approaches .................................................................... 38 
3.8.1 Comparison with Other Software Architectures and Product Line Research .. 38 
3.8.2 Comparison with Development Approaches and Tools ................................ .42 

3.9 Summary ............................................................................................................. 45 

4. A DESIGN METHOD FOR SOFTWARE PRODUCT LINES 
BASED ON WEB SERVICES ................................................................. 46 

4.1 Introduction ............................................................................................................................. 46 
4.2 Design Architecture of SPL Engineering Phase ............................................................. 48 

4.2.1 Use Case Modeling ....................................................................................... 49 
4.2.2 Feature Modeling .......................................................................................... 52 
4.2.3 User Interface Navigation Modeling .............................................................. 53 
4.2.4 Interaction Modeling ..................................................................................... 56 
4.2.5 Activity Modeling ......................................................................................... 58 
4.2.6 Software Architecture Modeling ................................................................... 61 
4.2.7 Attributes of Entity Classes ........................................................................... 64 
4.2.8 Design of Component Interfaces ................................................................... 64 

4.3 Summary ............................................................................................................. 67 

5. DEVELOPMENT APPROACHES FOR PRODUCT LINE 
CUSTOMIZA TION AND SEPARATION OF CONCERNS ................. 68 

5.1 Introduction ............................................................................................................................. 68 

5.2 Dynamic Customization of Client Application ............................................................... 70 

5.2.1 Development of DCAC Pattern ..................................................................... 82 
5.2.2 Advantages ofDCAC Approach: .................................................................. 91 
5.2.3 Disadvantages ofDCAC Approach: .............................................................. 92 

5.3 Introduction to the Customization Approaches Based on Separation of Concerns. 93 

5.4 Development of Dynamic Customization of Client Application with Separation of 
Concerns ......................................................................................................................................... 95 

5.4.1 Development ofDCAC-SC Pattern ............................................................. 103 
5.4.2 Advantages and Disadvantages ofDCAC-SC Approach: ............................ III 

5.5 Development of Static Customization of Client Application (SCAC) with 
Separation of Concerns ............................................................................................ 112 

5.5.1 Development ofSCAC Pattern .................................................................... 123 
5.5.2 Advantages ofSCAC Approach: ................................................................. 133 



www.manaraa.com

VI 

5.5.3 Disadvantages ofSCAC Approach: ............................................................. 133 
5.6 Comparison of Customization Methods ......................................................................... 134 

5.7 Usage of Development Approaches ................................................................................ 135 

5.8 Summary ............................................................................................................................... 136 

6. SOFTWARE PRODUCT LINE ENVIRONMENT PROTOTYPE.I37 
6.1 Introduction .................................... ..... ..... ............................................ .. ............................... 137 

6.2 Software Product Line Environment Prototype (SPLET). .......................................... 138 

6.2.1 Feature Modeling Subsystem: ... .......................... ........................................ 143 
6.2.2 Customization Subsystem: .......................................................................... 156 
6.2.3 Separation ofConcems and Source Code Integration Subsystem ................. 171 
6.2.4 Utility Subsystem .................... .. ..................................... .. ........................... 191 

6.3 Validation ................................ ..... .......................................... .. ......................... 193 
6.3.1 Validation Process ............. ........... ..... ..................................... ...... .............. 193 

6.4 Summary .......... ... .. ..................... ................. .. ............................. ............. ......... ..................... 196 . 

7. CONTRIBUTIONS AND FUTURE RESEARCH ............................ 197 
7.1 Introduction .................................... ... .................................................................................... 197 

7.2 Research Contribution ........................................................................................................ 197 

7.3 Future Research ................................................................................................. 202 
7.3.1 Testing of Software Product Lines .............................................................. 202 
7.3.2 Transaction of Web Services Using Customizable Workflows .................... 202 
7.3.3 Performance of SPL Applications Based on Web Services ... ....................... 202 
7.3.4 Evolution of SPL Applications Based on Web Services .............................. 203 

7.4 Summary .... ......................................................... ......................... ........... .......... 203 

APPENDIX A: RADIO FREQUENCY MANAGEMENT SYSTEM: A 
CASE STUDY ....................... ' .................................................................. 211 

A.l Introduction ............................................................. , ............................................................ 211 

A2 Validation of This Research ............................................................................................. 212 

A3 Multiple-View Design Architecture .................................................... ... .. ...................... 212 

A3.1 UseCaseModeling ...... ....... ... .... .... ..... .......... .................. ............. .............. 213 
A,3.2 Feature Modeling ................ .... ..... ............................. .. ............... ................ 216 
A3.3 User Interface Interaction Modeling ..... ............ ...... .. ...... ... ...... .... ............... 219 
A.3.4 Detailed Design ........... ....... .. ...... .............................. .......... ........................ 221 
A3.5 Web Services Modeling ............................................................................. 236 

A.4. SPL Development ............................................................................................ 237 
A 4.1 Dynamic Customization of Client Application (DCAC) Approach ............. 238 
A4.2 Dynamic Customization of Client Application with Separation of Concerns 
(DCAC-SC) Approach ............ ..... ..... ..... .............................................................. 242 
A 4.3 Static Customization of Client Application (SCAC) Approach .................. . 248 
A.4.4 Summary ............................... ............................. .. ..... ................................. 252 



www.manaraa.com

Vll 

APPENDIX B: DEVELOPMENT ENVIRONMENT PATTERNS .... 253 
B.1 Introduction ... ............................... ............... .................................... ... .... ..... ......................... 253 

B.2 Dynamic Cient Application Customization Pattern ........... ......................................... 254 

B.3 Dynamic Client Application Customization with Separation of Concerns Pattern 
........ ............. ... ... ....... .... .... ... .. .. .. .. ..... .. ... .... ......... ...... .......... ..... .... ... ... ........... ... ...... .. ....................... 261 
B.4 Static Client Application Customization Pattern .. ..... ....................... ... .......... .. ......... .. . 268 



www.manaraa.com

Vlll 

LIST OF FIGURES 

Page 
Figure 2-1 Evolutionary Software Product Line Engineering Process .............................. 8 
Figure 2-2 Component-Based Design Pattern [BachmannOO] .................... , ................... 17 
Figure 2-3 Service-Oriented Architecture [lrek03]. ........................................................ 22 
Figure 2-4 Aspect-Oriented Programming Architecture [AnastasopouloS01] ....... ....... 23 
Figure 2-5 Example of an x-frame hierarchy [Zhang03b] .............................................. 25 
Figure 3-1 SPLET components ...................................................................................... 36 
Figure 4-1 Evolutionary Software Product Line Engineering Process ........................... .46 
Figure 4-2 Use Case Diagram ........................................................................................ 51 
Figure 4-3 Feature Dependency Model .......................................................................... 53 
Figure 4-4 User Interface Navigation ModeL ................................................................ 55 
Figure 4-5 GUI -RoomReservation UI .......................................................................... 56 
Figure 4-6 Collaboration Diagram - Reserve single room .............................................. 57 
Figure 4-7 Expanded Collaboration Diagram - Reserve single room ............................. 58 
Figure 4-8 Activity Diagram- Main Reservation ........................................................... 59 
Figure 4-9 Activity Diagram - Overall Room Reservation UI ....................................... 60 
Figure 4-10 Activity Diagram-Reserve Room ............................................................... 61 
Figure 4-11 Example of Web Services Grouping ........................................................... 62 
Figure 4-12 Sample Input/Output for ReserveRoomWS ................................................ 63 
Figure 4-13 Sample Entity Attributes for ReserveRoom WS .......................................... 64 
Figure 4-14 Example of ports and connectors - RoomReservation Feature ..................... 65 
Figure 4-15 Example of Ports, Provided, and Required Interfaces .................................. 66 
Figure 4-16 Example of Port Interfaces Design .............................................................. 67 
Figure 5-1 Conceptual Overview ofDCAC Approach ................................................... 71 
Figure 5-2 Dynamic Customization Workflows (DCAC) Pattern ................................... 81 
Figure 5-3 Activity Diagram - Main Reservation UI ...................................................... 82 
Figure 5-4 Customization phase - Main Reservation UI .... , ............................................ 84 
Figure 5-5 Activity Diagram - RoomReservation UI ..................................................... 87 
Figure 5-6 Collaboration Diagram - RoomReservation ................................................. 89 
Figure 5-7 Implementation - RoomReservation VI ........................................................ 89 
Figure 5-8 Conceptual Overview ofDCAC-SC Approach ............................................. 97 
Figure 5-9 Dynamic Client Application Customization with Separation of Concerns 

Pattern ................................................................................................................. 103 
Figure 5-10 Activity Diagram - Main Reservation UI .................................................. 104 
Figure 5-11 MainReservation - Graphical User Interface ............................................. 105 
Figure 5-12 Implementation - Main Reservation UI. .................................................... 106 



www.manaraa.com

IX 

Figure 5-13 Implementation - Main Reservation UI ..................................................... 108 
Figure 5-14 MainReservation UI - Insertion Points List.. ............................................. 110 
Figure 5-15 Conceptual overview of SCAC approach .................................................. 113 
Figure 5-16 Static Client Application Customization (SCAC) Pattern .......................... 122 
Figure 5-17 Activity Diagram - Main Reservation UI .................................................. 123 
Figure 5-18 MainReservation - Graphical User Interface ............................................. 124 
Figure 5-19 Implementation - Main Reservation UI ..................................................... 126 
Figure 5-20 Implementation - Main Reservation UI ..................................................... 129 
Figure 5-21 Implementation - Main Reservation UI with RoomReservation Feature .... 130 
Figure 5-22 Implementation - Main Reservation UI with ResidentialReservation Feature 

............................................................................................................................ 131 
Figure 6-1 Evolutionary Software Product Line Engineering Process .......................... 137 
Figure 6-2 SPLET Components ................................................................................... 141 
Figure 6-3 Detailed Description ofSPLET .................................................................. 142 
Figure 6-4 SPLET - Main Screen ................................................................................. 143 
Figure 6-5 Feature Modeling Subsystem ...................................................................... 144 
Figure 6-6 Entity Class Diagram ................................................................................. 145 
Figure 6-7 Feature Editor-Main Interface .................................................................... 147 
Figure 6-8 Feature Editor - Feature Creation ............................................................... 148 
Figure 6-9 Feature Creation ......................................................................................... 148 
Figure 6-10 Feature Dependency Tree ......................................................................... 150 
Figure 6-11 Feature Editor - Related Diagrams ........................................................... 150 
Figure 6-12 Storing Related SPL Artifacts ................................................................... 151 
Figure 6-13 Feature Editor - Parameterized Variables ................................................. 152 
Figure 6-14 Creation of Parameterized Variables ......................................................... 152 
Figure 6-15 Feature Editor - Web Services .................................................................. 153 
Figure 6-16 Adding Web Services ............................................................................... 153 
Figure 6-17 Web Service Editor .................................................................................. 155 
Figure 6-18 Adding Web Services ............................................................................... 155 
Figure 6-19 Customization Subsystem in SPLET ........................................................ 157 
Figure 6-20 Feature Selector - Main Interface .............................................................. 158 
Figure 6-21 Feature Selector - Customization .............................................................. 159 
Figure 6-22 Feature Selector - Diagrams ..................................................................... 161 
Figure 6-23 Display Artifacts ...................................................................................... 161 
Figure 6-24 Feature Selector - Related Web Services .................................................. 162 
Figure 6-25 Web Service Invocation ............................................................................ 163 
Figure 6-26 Web Service invocation - ReserveRoom ................................................... 164 
Figure 6-27 SOAP Message ........................................................................................ 165 
Figure 6-28 Results Returned from roomReservation WS ............................................ 166 
Figure 6-29 Customization File - Generator Component.. ............................................ 169 
Figure 6-30 Entity Class Diagram - Customization File ............................................... 170 
Figure 6-31 Customization File Generation ................................................................. 170 
Figure 6-32 SPLET - Separation of Concerns & Code Weaving .................................. 172 
Figure 6-33 Variable Source Code Editor - Single Features ......................................... 174 



www.manaraa.com

x 

Figure 6-34 Single Feature Variable Source Code File Creation .................................. 174 
Figure 6-35 Variable Source Code Editor - Multi Features .......................................... 176 
Figure 6-36 Multi Feature Variable Source Code File Editor ....................................... 177 
Figure 6-37 Variable Source Code Editor - Composed Features ................................... 178 
Figure 6-38 Creation of Variable Source Code File ..................................................... 179 
Figure 6-39 Code Tracker ............................................................................................ 181 
Figure 6-40 Tracking of Feature Related Insertion Points ............................................ 182 
Figure 6-41 Tracking of Specific Insertion Point Name ............................................... 183 
Figure 6-42 Code Weaver ............................................................................................ 185 
Figure 6-43 Dynamic Integration ................................................................................. 186 
Figure 6-44 Code Weaving for OCAC-SC Method ...................................................... 187 
Figure 6-45 Static Integration ...................................................................................... 189 
Figure 6-46 Code Weaving for SCAC Method ............................................................ 189 
Figure 6-47 Samples of Variable File .......................................................................... 191 
Figure 6-48 SPLET - Utility ........................................................................................ 192 
Figure 6-49 File Extractor Utility ................................................................................ 192 
Figure A-I Use Case Model ........................................................................................ 214 
Figure A-2 SPL Feature Model .................................................................................... 218 
Figure A-3 User Interface Interaction Model ............................................................... 220 
Figure A-4 User Interface - MainUI ............................................................................ 221 
Figure A-5 Activity Diagram - MainUI User Interface ................................................ 222 
Figure A-6 Customization Phase - MainUI User Interface ........................................... 223 
Figure A-7 Interaction Modeling - MainUI user Interface ............................................ 224 
Figure A-8 Equipement! Antenna setup for MMC ............................................... , ........ 225 
Figure A-9 Activity Diagram - MMCconnect UI ......................................................... 226 
Figure A-I 0 Collaboration Diagram - MMCconnect UI ............................................... 226 
Figure A-II Interconnection WS .................................................................................. 227 
Figure A-12 Equipment! Antenna Setup - RMS ............................................................ 228 
Figure A-13 Activity Diagram - RMSconnect UI ........................................................ 229 
Figure A-14 Collaboration Diagram - RMSconnect UI ................................................ 229 
Figure A-I5 Equipment!Antenna Setup - MMS ........................................................... 230 
Figure A-16 Activity Diagram - MMSconnect UI ....................................................... 231 
Figure A-17 Collaboration Diagram - MMS ................................................................ 231 
Figure A-18 Interference Measurement UI .................................................................. 232 
Figure A-19 Activity Diagram - InterferenceMeasurement UI .................................... 233 
Figure A-69 Customization Phase - InterferenceMeasurement UI ............................... 234 
Figure A-21 Collaboration Diagram - Frequency Deviation ........................................ 235 
Figure A-22 Web Service Modeling ............................................................................ 236 
Figure A-23 Activity Diagram - MainUI User Interface ............................................... 237 
Figure A-24 DCAC Implementation - MainUI User Interface ...................................... 238 
Figure A-25 DCAC-SC Implementation - Main Reservation UI .................................. 243 
Figure A-26 Integrated Source Code - MainUI ............................................................ 245 
Figure A-27 SCAC Implementation - Main Reservation UI ......................................... 249 
Figure A-28 Integrated Source Code - MainUI ............................................................ 250 

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

Software Product Line Engineering Based on Web Services 

A dissertation submitted in partial fulfillment of the requirements for the Degree of 
Doctoral of Philosophy at George Mason University. 

By 

Mazen M. Aquil Saleh 

Bachelor of Science, Texas Southern University, 1990 
Master of Science, American University, 2000 

Director: Dr. Hassan Gomaa 
Professor, Information and Software Systems Engineering 

Spring Semester 2005 
George Masoh University 

Fairfax, Virginia 

Software Product Line Engineering Based on Web Servicesالعنوان:

Saleh, Mazen M. Aquilالمؤلف الرئيسي:

Gomaa, Hassan(Super.)مؤلفين آخرين:

2005التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

:MD 618453رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

البرمجيات، الإنترنت، تقنية المعلومات، هندسة الحاسباتمواضيع:

https://search.mandumah.com/Record/618453رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618453


www.manaraa.com

Software Product Line Engineering Based on Web Services 

A dissertation submitted in partial fulfillment of the requirements for the Degree of 
Doctoral of Philosophy at George Mason University. 

By 

Mazen M. Aquil Saleh 

Bachelor of Science, Texas Southern University, 1990 
Master of Science, American University, 2000 

Director: Dr. Hassan Gomaa 
Professor, Information and Software Systems Engineering 

Spring Semester 2005 
George Masoh University 

Fairfax, Virginia 



www.manaraa.com

ABSTRACT 

SOFTWARE PRODUCT LINE ENGINEERING BASED ON WEB 
SERVICES 

Mazen Saleh, Ph.D. 

George MasOn University, 2005 

Dissertation Director: Dr. Hassan Gomaa 

The field of software reuse has evolved from reuse of individual components towards 

large-scale reuse with software product lines. A software product line (SPL) consists of a 

family of software systems that have some common functionality and some variable 

functionality. A family of systems is frequently referred to as a software product line or 

software product family. 

This thesis investigates the teohnology of web servIces m the development and 

customization of software product lines. Web services are defined as a collection of 

software components that use XML to communicate with other applications over the 

Internet. 

Based on a survey of SPL engineering methods and environments, current approaches do 

not address the design, development, and automatic customization of software product 



www.manaraa.com

lines based on web services. It is necessary to extend the current approaches for modeling 

single web services-based systems to address the unique issues of software product lines. 

It is also necessary to introduce an automated development environment that enables 

developers to develop and automatically customize the web services-based software 

product line to generate executable target systems. 

In order to solve this problem, this research develops a design approach for developing 

software product lines based on web services. The design approach is based on a 

multiple-view model for SPL. It addresses the unique issues of engineering a web 

service-oriented customizable software product line system. 

This research also describes three . different development approaches to develop the 

proposed SPL design for automatic customization. The first approach describes the 

development of a SPL application that can be customized dynamically at run time. The 

second approach is an extension to the first approach to include separation of concerns 

between variable source code and kernel source code. The third development approach 

describes the development of a SPL application that can be customized at source code 

integration time. 

A proof-of-concept software product line engmeenng environment is developed to 

support the different development and customization approaches. The SPL engineering 



www.manaraa.com

environment supports the creation of a SPL model, customization of SPL applications 

based on each of the development approaches, and establishing separation of concerns 

and integration between variable source code and kernel source code. 



www.manaraa.com

SOFTWARE PRODUCT LINE ENGINEERING BASED ONWER 
SERVICES 

Committee: 

by 

, Mazen M: Aqull Saleh 
A Dissertation Submitted to the 

Graduate 'F acuIty 
of 

George Mason University 
In Partial Fulfillment of 

The Requirements for the Degree 
of 

Doctoral of Philosophy 
Information Technology 

_'--'---~ _____ ~~ ___ '--'---_ Hassan Gomaa; Dissertation 
Director 

Kerschberg 

V:::l~~~~~:;.:::~~:::::...:...,... __ :::::::::::::--atlephen .G. Nash, Associate Dean for 
Graduate Studies and Research 

1..,.::::::..+'-:'b"~=D""'7--------,---,----------- LloydJ .. Griffiths, Dean, School of ' 
Information Technology and Engineering 

Date: __ 4L.f1<.;..... -=:1-;...;:;b'-,'Z,--· ' _. /[0,--... _o-,-,S:::c.-.... ......;.. .. " _' ~~_' Spring, 2005 
, .. 7 . George Mas,on University 

Fairfax, Virginia 



www.manaraa.com

11 

Dedication 

I would like to dedicate this dissertation to my father, Mohammad, and mother, Ehsan, 
for all their support, encouragement, moral teachings, and sacrifices throughout my entire 
life and my PhD journey. My father has always been my role model for his wisdom and 
way of life. My mother has given me eternal love and care. 

I also dedicate this dissertation to my beautiful wife, Sahar, and my children, Faris, 
Amani, and Reem. My wife has stood by my side since my undergraduate study. She has 
been my close friend and my life companion. 

\ 



www.manaraa.com

111 

Acknowledgment 

I would like to express my deep appreciation to my PhD. Advisor, Prof Hassan Gomaa 
for his great guidance, encouragement, and support throughout my PhD program. He 
taught me all of what I know in the Software Product Line Engineering field. He made it 
possible for me to relate the academic teachings to real life working experience. He has 
always found time to work with me and keep me focus in my research. His guidance and 
critiques have influenced my research to produce quality work. I truly believe that he is 
the best advisor a student can have. 

I would like to thank Dr. Kerschberg for his teachings and support. His method of 
teaching was outstanding. He opened for me many doors to new knowledge. His 
teachings had great influence in my research. 

I would like to thank my entire dissertation committee for their encouragement and 
support. 

Finally, I would like to thank Erika Olimpiew for her help and support. We have been in 
this PhD journey together from the beginning. Erika and I have started a PhD informal 
sessions that were held weekly with many graduate students to exchange information and 
obtain feedback. Her comments and critiques were invaluable. 



www.manaraa.com

IV 

TABLE OF CONTENTS 

Page 

ABSTRACT ........................................................................... XI 

1 .. INTRODUCTION ............................... · ................................................... 1 
1.1 Background ... ........................ .. ..... ......... .......................... ..................... ... .. ................................ 1 

1.2 Research Problem and Approach .. ..................... .......................... ........... ............................. 2 

1.3 Importance and Rationale of This Research .. .. .. .... .................. .................. ...... .. ..... ........... 3 

1.4 Terminology ... .. .... ..... .. .... .... ....... ................... .. ... ... ....... .......... ... .................. ....................... ... ... . 3 
1.5 Organization ........... ......... .. .................... ............... ........... .. .. .. ......... ..................... ............. ... ..... 5 

2. RELA TED WORK ................................................................................ 6 
2.1 Introduction ................................ ....... ................................. ...... .. .. ......................... 6 
2.2 Software Product Lines .......... ....... ..... ................................ ...... ... ....................... .. .. 6 
2.3 Evolutionary Software Product Line Engineering Process ..... ......... ...... ........ .. ... ... .. 7 
2.4 Multiple-View Models of Software Product Lines .......................... .. .. .......................... 8 

2.4.1 Use Case Model for Software Product Lines ...... ..... ... ... ... .. ....... : ..... .. .. .. .. ........ 9 
2.4.2. Feature Analysis for Software Product Lines .. ............ .. .... .. .......... .. .. .. .. ...... .. .. 9 
2.4.3 Static Model for Software Product Lines .... ...... .................... .. ............ .. .. .. .. ... 10 
2.4.4 Collaboration Model for Software Product Lines ..... .. ...... .. ...... .. .. .. ........... .. .. 11 

2.5 Other Software Product Line Engineering Methods ............................................. 12 
2.5.1 Feature-Oriented Domain Analysis (FODA) ................. .. ... ........................... 12 
2.5.2 Reuse-driven Software Engineering Method (RSEB) ................ .................. .. 13 
2.5.3 FAST ...... .. .............. .. .... ......... ............. ................ .. ...... .. .... ..... .. .................... . 13 
2.5.4 KobrA .. .... .. .. .. .. .. .. .. .. .......... .. ....... .. ..... ....... ... ..... ........... ... . , ... .... .... .. ... ............ 14 
2.5 .5 Knowledge-Based Requirement Elicitation Tool (KBRET) .... .. ...... .. ...... .... ... 14 
2.5 .6 Web-Based Software Product Lines ....... .... ........ ...... ... .. .......... .. ..... ........ .. ..... 15 

2.6 Component-Based. Software Engineering ......... ........ ................................ ... .. .................. 16 

2.7 Web Services ................ ...... .... ........................... .. .............................. .. ........ ........................... 19 

2.7.1 Advantages of Web Services ...... ... ........................ ... ....... ..... .. ...................... . 20 
2.7.2 Disadvantages of Web Services ......... ................. ........ .... .... ........ ................... 21 
2.7.3 Service-Oriented Architecture ... ............................... ... ..... .... ......................... 21 

2.8 Aspect-Oriented Programming ............................................ .. ................ ............................. 22 

2.9 Frame Technology .. ... .. ...... ............................... ..... .......... ...................... ........... ..................... 24 

2.10 Summary ........ ..... ... ........ .... ......... .. .. .. ........ .. ... ............ .................. ........ .... .. .... .. .... .. .. .. .......... . 26 



www.manaraa.com

v 

3. PROBLEM STATEMENT AND RESEARCH APPROACH ............ 27 
3.1 Introduction ............................................................................................................................. 27 

3.2 Problem Statement ................................................................................................................ 28 
3.3 Research Approach ............................................................................................................... 28 
3.4 Design Method for Software Product Line Service-Oriented Architecture .............. 30 

3.5 Development Environments ................................................................................................ 31 

3.6 Proof-of-oncept Development Environment... ................................................................. 34 

3.7 Validation ................................................................................................................................ 37 

3.8 Comparison with Other Approaches .................................................................... 38 
3.8.1 Comparison with Other Software Architectures and Product Line Research .. 38 
3.8.2 Comparison with Development Approaches and Tools ................................ .42 

3.9 Summary ............................................................................................................. 45 

4. A DESIGN METHOD FOR SOFTWARE PRODUCT LINES 
BASED ON WEB SERVICES ................................................................. 46 

4.1 Introduction ............................................................................................................................. 46 
4.2 Design Architecture of SPL Engineering Phase ............................................................. 48 

4.2.1 Use Case Modeling ....................................................................................... 49 
4.2.2 Feature Modeling .......................................................................................... 52 
4.2.3 User Interface Navigation Modeling .............................................................. 53 
4.2.4 Interaction Modeling ..................................................................................... 56 
4.2.5 Activity Modeling ......................................................................................... 58 
4.2.6 Software Architecture Modeling ................................................................... 61 
4.2.7 Attributes of Entity Classes ........................................................................... 64 
4.2.8 Design of Component Interfaces ................................................................... 64 

4.3 Summary ............................................................................................................. 67 

5. DEVELOPMENT APPROACHES FOR PRODUCT LINE 
CUSTOMIZA TION AND SEPARATION OF CONCERNS ................. 68 

5.1 Introduction ............................................................................................................................. 68 

5.2 Dynamic Customization of Client Application ............................................................... 70 

5.2.1 Development of DCAC Pattern ..................................................................... 82 
5.2.2 Advantages ofDCAC Approach: .................................................................. 91 
5.2.3 Disadvantages ofDCAC Approach: .............................................................. 92 

5.3 Introduction to the Customization Approaches Based on Separation of Concerns. 93 

5.4 Development of Dynamic Customization of Client Application with Separation of 
Concerns ......................................................................................................................................... 95 

5.4.1 Development ofDCAC-SC Pattern ............................................................. 103 
5.4.2 Advantages and Disadvantages ofDCAC-SC Approach: ............................ III 

5.5 Development of Static Customization of Client Application (SCAC) with 
Separation of Concerns ............................................................................................ 112 

5.5.1 Development ofSCAC Pattern .................................................................... 123 
5.5.2 Advantages ofSCAC Approach: ................................................................. 133 



www.manaraa.com

VI 

5.5.3 Disadvantages ofSCAC Approach: ............................................................. 133 
5.6 Comparison of Customization Methods ......................................................................... 134 

5.7 Usage of Development Approaches ................................................................................ 135 

5.8 Summary ............................................................................................................................... 136 

6. SOFTWARE PRODUCT LINE ENVIRONMENT PROTOTYPE.I37 
6.1 Introduction .................................... ..... ..... ............................................ .. ............................... 137 

6.2 Software Product Line Environment Prototype (SPLET). .......................................... 138 

6.2.1 Feature Modeling Subsystem: ... .......................... ........................................ 143 
6.2.2 Customization Subsystem: .......................................................................... 156 
6.2.3 Separation ofConcems and Source Code Integration Subsystem ................. 171 
6.2.4 Utility Subsystem .................... .. ..................................... .. ........................... 191 

6.3 Validation ................................ ..... .......................................... .. ......................... 193 
6.3.1 Validation Process ............. ........... ..... ..................................... ...... .............. 193 

6.4 Summary .......... ... .. ..................... ................. .. ............................. ............. ......... ..................... 196 . 

7. CONTRIBUTIONS AND FUTURE RESEARCH ............................ 197 
7.1 Introduction .................................... ... .................................................................................... 197 

7.2 Research Contribution ........................................................................................................ 197 

7.3 Future Research ................................................................................................. 202 
7.3.1 Testing of Software Product Lines .............................................................. 202 
7.3.2 Transaction of Web Services Using Customizable Workflows .................... 202 
7.3.3 Performance of SPL Applications Based on Web Services ... ....................... 202 
7.3.4 Evolution of SPL Applications Based on Web Services .............................. 203 

7.4 Summary .... ......................................................... ......................... ........... .......... 203 

APPENDIX A: RADIO FREQUENCY MANAGEMENT SYSTEM: A 
CASE STUDY ....................... ' .................................................................. 211 

A.l Introduction ............................................................. , ............................................................ 211 

A2 Validation of This Research ............................................................................................. 212 

A3 Multiple-View Design Architecture .................................................... ... .. ...................... 212 

A3.1 UseCaseModeling ...... ....... ... .... .... ..... .......... .................. ............. .............. 213 
A,3.2 Feature Modeling ................ .... ..... ............................. .. ............... ................ 216 
A3.3 User Interface Interaction Modeling ..... ............ ...... .. ...... ... ...... .... ............... 219 
A.3.4 Detailed Design ........... ....... .. ...... .............................. .......... ........................ 221 
A3.5 Web Services Modeling ............................................................................. 236 

A.4. SPL Development ............................................................................................ 237 
A 4.1 Dynamic Customization of Client Application (DCAC) Approach ............. 238 
A4.2 Dynamic Customization of Client Application with Separation of Concerns 
(DCAC-SC) Approach ............ ..... ..... ..... .............................................................. 242 
A 4.3 Static Customization of Client Application (SCAC) Approach .................. . 248 
A.4.4 Summary ............................... ............................. .. ..... ................................. 252 



www.manaraa.com

Vll 

APPENDIX B: DEVELOPMENT ENVIRONMENT PATTERNS .... 253 
B.1 Introduction ... ............................... ............... .................................... ... .... ..... ......................... 253 

B.2 Dynamic Cient Application Customization Pattern ........... ......................................... 254 

B.3 Dynamic Client Application Customization with Separation of Concerns Pattern 
........ ............. ... ... ....... .... .... ... .. .. .. .. ..... .. ... .... ......... ...... .......... ..... .... ... ... ........... ... ...... .. ....................... 261 
B.4 Static Client Application Customization Pattern .. ..... ....................... ... .......... .. ......... .. . 268 



www.manaraa.com

Vlll 

LIST OF FIGURES 

Page 
Figure 2-1 Evolutionary Software Product Line Engineering Process .............................. 8 
Figure 2-2 Component-Based Design Pattern [BachmannOO] .................... , ................... 17 
Figure 2-3 Service-Oriented Architecture [lrek03]. ........................................................ 22 
Figure 2-4 Aspect-Oriented Programming Architecture [AnastasopouloS01] ....... ....... 23 
Figure 2-5 Example of an x-frame hierarchy [Zhang03b] .............................................. 25 
Figure 3-1 SPLET components ...................................................................................... 36 
Figure 4-1 Evolutionary Software Product Line Engineering Process ........................... .46 
Figure 4-2 Use Case Diagram ........................................................................................ 51 
Figure 4-3 Feature Dependency Model .......................................................................... 53 
Figure 4-4 User Interface Navigation ModeL ................................................................ 55 
Figure 4-5 GUI -RoomReservation UI .......................................................................... 56 
Figure 4-6 Collaboration Diagram - Reserve single room .............................................. 57 
Figure 4-7 Expanded Collaboration Diagram - Reserve single room ............................. 58 
Figure 4-8 Activity Diagram- Main Reservation ........................................................... 59 
Figure 4-9 Activity Diagram - Overall Room Reservation UI ....................................... 60 
Figure 4-10 Activity Diagram-Reserve Room ............................................................... 61 
Figure 4-11 Example of Web Services Grouping ........................................................... 62 
Figure 4-12 Sample Input/Output for ReserveRoomWS ................................................ 63 
Figure 4-13 Sample Entity Attributes for ReserveRoom WS .......................................... 64 
Figure 4-14 Example of ports and connectors - RoomReservation Feature ..................... 65 
Figure 4-15 Example of Ports, Provided, and Required Interfaces .................................. 66 
Figure 4-16 Example of Port Interfaces Design .............................................................. 67 
Figure 5-1 Conceptual Overview ofDCAC Approach ................................................... 71 
Figure 5-2 Dynamic Customization Workflows (DCAC) Pattern ................................... 81 
Figure 5-3 Activity Diagram - Main Reservation UI ...................................................... 82 
Figure 5-4 Customization phase - Main Reservation UI .... , ............................................ 84 
Figure 5-5 Activity Diagram - RoomReservation UI ..................................................... 87 
Figure 5-6 Collaboration Diagram - RoomReservation ................................................. 89 
Figure 5-7 Implementation - RoomReservation VI ........................................................ 89 
Figure 5-8 Conceptual Overview ofDCAC-SC Approach ............................................. 97 
Figure 5-9 Dynamic Client Application Customization with Separation of Concerns 

Pattern ................................................................................................................. 103 
Figure 5-10 Activity Diagram - Main Reservation UI .................................................. 104 
Figure 5-11 MainReservation - Graphical User Interface ............................................. 105 
Figure 5-12 Implementation - Main Reservation UI. .................................................... 106 



www.manaraa.com

IX 

Figure 5-13 Implementation - Main Reservation UI ..................................................... 108 
Figure 5-14 MainReservation UI - Insertion Points List.. ............................................. 110 
Figure 5-15 Conceptual overview of SCAC approach .................................................. 113 
Figure 5-16 Static Client Application Customization (SCAC) Pattern .......................... 122 
Figure 5-17 Activity Diagram - Main Reservation UI .................................................. 123 
Figure 5-18 MainReservation - Graphical User Interface ............................................. 124 
Figure 5-19 Implementation - Main Reservation UI ..................................................... 126 
Figure 5-20 Implementation - Main Reservation UI ..................................................... 129 
Figure 5-21 Implementation - Main Reservation UI with RoomReservation Feature .... 130 
Figure 5-22 Implementation - Main Reservation UI with ResidentialReservation Feature 

............................................................................................................................ 131 
Figure 6-1 Evolutionary Software Product Line Engineering Process .......................... 137 
Figure 6-2 SPLET Components ................................................................................... 141 
Figure 6-3 Detailed Description ofSPLET .................................................................. 142 
Figure 6-4 SPLET - Main Screen ................................................................................. 143 
Figure 6-5 Feature Modeling Subsystem ...................................................................... 144 
Figure 6-6 Entity Class Diagram ................................................................................. 145 
Figure 6-7 Feature Editor-Main Interface .................................................................... 147 
Figure 6-8 Feature Editor - Feature Creation ............................................................... 148 
Figure 6-9 Feature Creation ......................................................................................... 148 
Figure 6-10 Feature Dependency Tree ......................................................................... 150 
Figure 6-11 Feature Editor - Related Diagrams ........................................................... 150 
Figure 6-12 Storing Related SPL Artifacts ................................................................... 151 
Figure 6-13 Feature Editor - Parameterized Variables ................................................. 152 
Figure 6-14 Creation of Parameterized Variables ......................................................... 152 
Figure 6-15 Feature Editor - Web Services .................................................................. 153 
Figure 6-16 Adding Web Services ............................................................................... 153 
Figure 6-17 Web Service Editor .................................................................................. 155 
Figure 6-18 Adding Web Services ............................................................................... 155 
Figure 6-19 Customization Subsystem in SPLET ........................................................ 157 
Figure 6-20 Feature Selector - Main Interface .............................................................. 158 
Figure 6-21 Feature Selector - Customization .............................................................. 159 
Figure 6-22 Feature Selector - Diagrams ..................................................................... 161 
Figure 6-23 Display Artifacts ...................................................................................... 161 
Figure 6-24 Feature Selector - Related Web Services .................................................. 162 
Figure 6-25 Web Service Invocation ............................................................................ 163 
Figure 6-26 Web Service invocation - ReserveRoom ................................................... 164 
Figure 6-27 SOAP Message ........................................................................................ 165 
Figure 6-28 Results Returned from roomReservation WS ............................................ 166 
Figure 6-29 Customization File - Generator Component.. ............................................ 169 
Figure 6-30 Entity Class Diagram - Customization File ............................................... 170 
Figure 6-31 Customization File Generation ................................................................. 170 
Figure 6-32 SPLET - Separation of Concerns & Code Weaving .................................. 172 
Figure 6-33 Variable Source Code Editor - Single Features ......................................... 174 



www.manaraa.com

x 

Figure 6-34 Single Feature Variable Source Code File Creation .................................. 174 
Figure 6-35 Variable Source Code Editor - Multi Features .......................................... 176 
Figure 6-36 Multi Feature Variable Source Code File Editor ....................................... 177 
Figure 6-37 Variable Source Code Editor - Composed Features ................................... 178 
Figure 6-38 Creation of Variable Source Code File ..................................................... 179 
Figure 6-39 Code Tracker ............................................................................................ 181 
Figure 6-40 Tracking of Feature Related Insertion Points ............................................ 182 
Figure 6-41 Tracking of Specific Insertion Point Name ............................................... 183 
Figure 6-42 Code Weaver ............................................................................................ 185 
Figure 6-43 Dynamic Integration ................................................................................. 186 
Figure 6-44 Code Weaving for OCAC-SC Method ...................................................... 187 
Figure 6-45 Static Integration ...................................................................................... 189 
Figure 6-46 Code Weaving for SCAC Method ............................................................ 189 
Figure 6-47 Samples of Variable File .......................................................................... 191 
Figure 6-48 SPLET - Utility ........................................................................................ 192 
Figure 6-49 File Extractor Utility ................................................................................ 192 
Figure A-I Use Case Model ........................................................................................ 214 
Figure A-2 SPL Feature Model .................................................................................... 218 
Figure A-3 User Interface Interaction Model ............................................................... 220 
Figure A-4 User Interface - MainUI ............................................................................ 221 
Figure A-5 Activity Diagram - MainUI User Interface ................................................ 222 
Figure A-6 Customization Phase - MainUI User Interface ........................................... 223 
Figure A-7 Interaction Modeling - MainUI user Interface ............................................ 224 
Figure A-8 Equipement! Antenna setup for MMC ............................................... , ........ 225 
Figure A-9 Activity Diagram - MMCconnect UI ......................................................... 226 
Figure A-I 0 Collaboration Diagram - MMCconnect UI ............................................... 226 
Figure A-II Interconnection WS .................................................................................. 227 
Figure A-12 Equipment! Antenna Setup - RMS ............................................................ 228 
Figure A-13 Activity Diagram - RMSconnect UI ........................................................ 229 
Figure A-14 Collaboration Diagram - RMSconnect UI ................................................ 229 
Figure A-I5 Equipment!Antenna Setup - MMS ........................................................... 230 
Figure A-16 Activity Diagram - MMSconnect UI ....................................................... 231 
Figure A-17 Collaboration Diagram - MMS ................................................................ 231 
Figure A-18 Interference Measurement UI .................................................................. 232 
Figure A-19 Activity Diagram - InterferenceMeasurement UI .................................... 233 
Figure A-69 Customization Phase - InterferenceMeasurement UI ............................... 234 
Figure A-21 Collaboration Diagram - Frequency Deviation ........................................ 235 
Figure A-22 Web Service Modeling ............................................................................ 236 
Figure A-23 Activity Diagram - MainUI User Interface ............................................... 237 
Figure A-24 DCAC Implementation - MainUI User Interface ...................................... 238 
Figure A-25 DCAC-SC Implementation - Main Reservation UI .................................. 243 
Figure A-26 Integrated Source Code - MainUI ............................................................ 245 
Figure A-27 SCAC Implementation - Main Reservation UI ......................................... 249 
Figure A-28 Integrated Source Code - MainUI ............................................................ 250 



www.manaraa.com

1 

1. INTRODUCTION 

1.1 Background 

The field of software reuse has evolved from reuse of individual components towards 

large-scale reuse with software product lines [Clements02]. A software product line 

(SPL) consists of a family of software systems that have some common functionality and 

some variable functionality. Parnas referred to a collection of systems that share common 

characteristics as a family of systems [parnas79]. According to Parnas, it is worth 

considering the development of a family of systems when there is more to be gained by 

analyzing the systems collectively rather than separately, i.e. the systems have more 

features in common than features that distinguish them. A family of systems is now 

referred to as a software product line or software product family. 

A Software Product Line (SPL) is developed by engineering a reusable architecture for 

the product line, which can be configured to generate target applications [Gomaa99, 

Gomaa04]. The two major activities used in developing product lines are SPL 

engineering and application engineering. SPL engineering involves the analysis, design, 

and implementation of product line software that satisfy the requirements of the families 

of systems [Weiss99, Gomaa04]. Application engineering involves tailoring the 



www.manaraa.com

2 

/~ngineered SPL to produce target applications based on a given set of configuration 

requirements [Sugumaran92, Gomaa04]. 

This dissertation addresses product lines based on web services. A web service is defined 

as a collection of functional methods that are grouped into a single package and published 

in the Internet for use by other applications. Web services use the standard Extensible 

Markup Language (XML) to exchange information with other software via the Internet 

protocols [Deitel et al. 2003, Howard04, Booth04]. 

Although there is much research into software product line engineering, this research 

extends product line concepts to address the engineering and customization of product 

lines that are based on web services. 

1.2 Research Problem and Approach 

This research focuses on designing, developing and customizing software product lines 

based on web services to derive executable target applications from the product line using 

an automated customization environment. The approach taken is to: 

a) Develop a design approach for software product line service-oriented architecture. 

b) Introduce three different development approaches to support the automatic 

customization of SPL architecture and components: 

c) Develop a proof-of-concept prototype to support this research 



www.manaraa.com

3 

d) Validate this research with two web services-based software product line case 

studies. 

1.3 Importance and Rationale of This Research 

The idea of web services has been strongly promoted in industry by companies such as 

Microsoft, ffiM, Oracle, and Hewlett-Packard. They see this new technology as a broad 

new vision for how software systems are analyzed, developed, and used [McDougall 01]. 

Web services employ open standards that are text-based, which introduce a new approach 

to communication between heterogeneous platforms and applications [Deitel 03]. Using 

the already existing internet technology, web services make communication, 

interoperability, and integration cheaper and easier to achieve, compared to current 

methods, such as CORBA and DCOM [Deitel 03]. As the use of web services continues 

to grow, software product lines engineers should take full advantage of this technology. 

Therefore, it is essential to develop a new methodology that enables the design, 

development, and customization of software product lines that consist of web services

based components. 

1.4 Terminology 

This section provides definitions of important terms used in this dissertation. 

Unified Modeling Language 

Unified Modeling Language (UML) is a standardized object-oriented development 

environment that is used to analyze and design systems. 



www.manaraa.com

4 

Software Product Line 

A software product line (SPL) is a family of systems that share common features. It is 

developed by engineering an application domain that can be configured to generate target 

systems through the customization process of selecting optional and alternative features. 

[Parnas79, Gomaa04] 

Feature 

A feature is a functional requirement of a software application. 

SPL Engineer 

The SPL engineer is responsible for designing and developing the product line. 

Application Engineer 

The application engineer is responsible for customizing the product line to derive target 

applications. 

Kernel Source Code 

Kernel source code refers to source code that exists in all derived target applications. 

Variable Source Code 

Variable source code refers to optional or alternative source code blocks that are 

integrated with kernel source code based on feature selection to produce a customized 

target application. 

Separation of Concerns 

Separation of concerns refers to the separation of common and variable product line 

concerns. It involves the separation of variable source code from kernel source code into 

a variable source code file. 



www.manaraa.com

5 

Code Weaving 

Code weaving is the integration of kernel source code with optional and alternative 

source code 

Client application 

Client application refers to the client subsystem and the software objects it contains. 

Server application 

Server application refers to the server subsystem and its constituent web service 

components and database. 

1.5 Organization 

The rest of the dissertation is organized as follows. Chapter 2 contains an overview of 

related work. Chapter 3 addresses the problem statement and research approach, 

including comparison of related work with this research effort. Chapter 4 describes the 

proposed design approach using a Hotel System case study. Chapter 5 describes the three 

development approaches and their customization environment. Chapter 6 describes the 

proof-of-concept prototype that is used to support this research. Chapter 7 includes 

contributions and future research. References and appendices are attached at the end, 

including the second case study of Radio Frequency Management System. 



www.manaraa.com

6 

2. RELATED WORK 

2.1 Introduction 

This chapter surveys other research efforts that are related to the research described in 

this dissertation. This chapter begins by defining software product lines in section 2.2. 

Section 2.3 describes the Evolutionary Software Product Line Engineering Process 

(PLUS). Section 2.4 describes the multiple-view model of software product lines used in 

the PLUS environment. Section 2.5 addresses other software product line engineering 

methods. 2.6 describes component-based software engineering. Web services are 

described in section 2.7. Section 2.8 describes Aspect-Oriented Programming, and 

section 2.9 describes frame technology. 

2.2 Software Product Lines 

A software product line is a family of systems that share common features [Gomaa92, 

Gomaa04]. It is developed by engineering a Software Product Line (SPL) that can be 

tailored to generate target systems [Gomaa99, Farrukh98, Weiss99]. Software product 

line engineering involves the analysis, design, and implementation of a product line that 

satisfies the requirements of all target applications [Sugumaran92, Gomaa04]. This can 

be achieved by capturing the commonality and variability of a family of system at the 

analysis phase, and applying this information at the design and implementation phases 



www.manaraa.com

/ 

7 

[Gomaa 99]. "The goal of software product families is to improve productivity through 

software reuse. A new application system can be configured from the domain model 

given the common features (requirement) of the domain and variable features that reflect 

differences among the members of the product family" [Farrukb 1998]. 

2.3 Evolutionary Software Product Line Engineering Process 

The Evolutionary Software Product Line Engineering Process (PLUS) [Gomaa04] 

consists of two main processes, as shown in Figure 2-1: 

a) Software Product line Engineering. A product line multiple-view model, which 

addresses the multiple views of a software product line, is developed. The product 

line multiple-view model, product line architecture, and reusable components are 

developed and stored in the product line reuse library. 

b) ApplicatioQ. engineering. Involves the configuration of target applications from the 

SPL architecture and implementation. A target application is a member of the 

software product line. The multiple-view model for a target application is configured 

from the product line multiple-view model. The user selects the desired features for 

the product line member (referred to as target application). Given the target 

application features, the product line model and architecture are adapted and tailored 

to derive the · target application model and architecture. The architecture determines 

which of the reusable components are needed for configuring the executable target 

application. 



www.manaraa.com

8 

Earlier papers have described how this approach was carried out before [Gomaa96, 

Gomaa99] and after the introduction of the UML [Gomaa02, Gomaa04]. This research 

describes how product line engineering can be carried out for product lines that are based 

on Web Services. 

Product Line Multiple-View Model, 
Product Line Product Line Architecture, 
Requirements Product Line Reusable Components 

...---.... ·1 Engineering 

/' -...., 
'- ./ 

Product Line 
Reuse 

Library 
'--

Target System .....-_L-----. 
Requirements Target System 

Application 
Engineering 

Unsatisfied Requirements, Errors, Adaptations 

Figure 2-1 Evolutionary Software Product Line Engineering Process 

2.4 Multiple-View Models of Software Product Lines 

A multiple-view model for a software product line defines the different characteristics of 

a software family [parnas79], including the commonality and variability among the 

members of the family [Clements02, Weiss99]. A multiple-view model is represented 

using the UML notation [Rumbaugh99, GomaaOOa, Gomaa04] and considers the product 



www.manaraa.com

9 

line from different perspectives. The PLUS environment [Gomaa04] is based on the 

multiple-view mode for software product lines, as described in the following sections. 

2.4.1 Use Case Model for Software Product Lines 

The functional requirements of a system are defined in terms of use cases and actors 

[Jacobson97]. An actor is a user type. A use case describes the sequence of interactions 

between the actor and the system, considered as a black box. 

For a single system, all use cases are required. When modeling a software product line, 

kernel use cases are those use cases required by all members of the family. Optional use 

cases are those use cases required by some but not all members of the family. Some use 

cases may be alternative, that is different versions of the use case are required by 

different members of the family [Gomaa04]. 

2.4.2. Feature Analysis for Software Product Lines 

Feature analysis is an important aspect of domain analysis [Cohen98, Gomaa04, Griss98, 

Kang90]. In domain analysis, features are analyzed and categorized as kernel features 

(must be supported in all target systems), optional features (only required in some target 

systems), and prerequisite features (dependent upon other features). There may also be 

dependencies among features, such as mutually exclusive features. The emphasis in 

feature analysis is on the optional and alternative features, since · they differentiate one 

member of the family from the others. In modeling software product lines, features may 

be functional features (addressing software functional requirements), non-functional 



www.manaraa.com

10 

features (e.g., relating to security or performance), or parametric features (e.g., parameter 

whose value can be set differently in different members of the product line). 

In the object-oriented analysis of single systems, use cases are used to determine the 

functional features of a system. They can also serve this purpose in product families. 

Griss [Griss98] has pointed out that the goal of the use case analysis is to get a good 

understanding of the functional requirements whereas the goal of feature analysis is to 

enable reuse. Use cases and features may be used to complement each other. In 

particular, use cases can be mapped to features based on their reuse properties, 

Functional requirements that are required by all members of the family are packaged into 

a kernel feature. From a use case perspective, this means that the kernel use cases, which 

are required by all members of the family, constitute the kernel feature. Optional use 

cases, which are always used together, may also be packaged into an optional feature. 

2.4.3 Static Model for Software Product Lines 

A static model for a product line has kernel ~lasses, which ate used by all members of the 

product family, and optional classes that are used by some but not all members of the 

family. Variants of a class, which are used by different members of the product family, 

can be modeled using a generalization I specialization hierarchy. UML stereotypes are 

used to allow new modeling elements, tailored to the modeler's problem, which are based 

on existing modeling elements [Booch99, Rumbaugh99]. Thus, the stereotypes 

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

205 

References 

[Anastasopoulos01] M. Anastasopoulos and C. Gacek. "Implementing Product Line 
Variabilities," Proc ACM Symposium on Software Reusability, Toronto, May 
2001, pp. 109-117. 

[Anastasopoulos04] M. Anastasopoulos and D. Muthig, "An Evolution of Aspect
Oriented Programming as a Product Line Implementation Technology," Proc. 8th 
International Conference on Software Reuse, Springer LNCS 3107, 2004, pp. 
141- 156. 

[AtkinsonOO] C. Atkinson, 1. Bayer, and D. Muthig, "Component-Based Product Line 
Development: The Kobra Approach," SPCL, 2000. Available: 
http://se2c. uni.lu/tikil se2c-bib _download. php?id=700. 

[BachmannOO] F. Bachmann, L., C. Buhman, S. Comella-Dorda et at., "Technical 
Concepts of Component-Based Software Engineering. 2000," Software 
Engineering Institute,Camegi Mellon University, Pittsburgh, P A, May 2000. 

[BassOO] L. Bass, C. Buhman, S. Comella-Dorda et at., "Market Assesment of 
Component-Based Software Engineering," Software Engineering Institute, 
Camegi Mellon University, 2000. 

[BaxterOl] I. Baxter, "Dms(the Design Maintenance System) a Tool for Automating 
Software Quality Enhancement," Semantic Designs, Inc, 2001 . 

[Bassett97] P. Bassett, Framing Software Reuse - Lessons from the Real World, Prentice 
Hall, 1997. 

[Bisson] S. Bisson, "At Your Service", DNJ, 2004. Available: 
http://www.dnjonline.comlarticlesiarchitect/may04_atyourservice.asp. 

[Bodkin02] R. Bodkin, "Commercialization AOSD: The Road Ahead," 2002. Available: 
http://www.jpmdesign.de/conferences/aosd/2003/papersl AOSD _ Commercializati 
on_Position _ 2003 _ final. pdf 

Software Product Line Engineering Based on Web Servicesالعنوان:

Saleh, Mazen M. Aquilالمؤلف الرئيسي:

Gomaa, Hassan(Super.)مؤلفين آخرين:

2005التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

:MD 618453رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

البرمجيات، الإنترنت، تقنية المعلومات، هندسة الحاسباتمواضيع:

https://search.mandumah.com/Record/618453رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618453


www.manaraa.com

205 

References 

[Anastasopoulos01] M. Anastasopoulos and C. Gacek. "Implementing Product Line 
Variabilities," Proc ACM Symposium on Software Reusability, Toronto, May 
2001, pp. 109-117. 

[Anastasopoulos04] M. Anastasopoulos and D. Muthig, "An Evolution of Aspect
Oriented Programming as a Product Line Implementation Technology," Proc. 8th 
International Conference on Software Reuse, Springer LNCS 3107, 2004, pp. 
141- 156. 

[AtkinsonOO] C. Atkinson, 1. Bayer, and D. Muthig, "Component-Based Product Line 
Development: The Kobra Approach," SPCL, 2000. Available: 
http://se2c. uni.lu/tikil se2c-bib _download. php?id=700. 

[BachmannOO] F. Bachmann, L., C. Buhman, S. Comella-Dorda et at., "Technical 
Concepts of Component-Based Software Engineering. 2000," Software 
Engineering Institute,Camegi Mellon University, Pittsburgh, P A, May 2000. 

[BassOO] L. Bass, C. Buhman, S. Comella-Dorda et at., "Market Assesment of 
Component-Based Software Engineering," Software Engineering Institute, 
Camegi Mellon University, 2000. 

[BaxterOl] I. Baxter, "Dms(the Design Maintenance System) a Tool for Automating 
Software Quality Enhancement," Semantic Designs, Inc, 2001 . 

[Bassett97] P. Bassett, Framing Software Reuse - Lessons from the Real World, Prentice 
Hall, 1997. 

[Bisson] S. Bisson, "At Your Service", DNJ, 2004. Available: 
http://www.dnjonline.comlarticlesiarchitect/may04_atyourservice.asp. 

[Bodkin02] R. Bodkin, "Commercialization AOSD: The Road Ahead," 2002. Available: 
http://www.jpmdesign.de/conferences/aosd/2003/papersl AOSD _ Commercializati 
on_Position _ 2003 _ final. pdf 



www.manaraa.com

206 

[Boonsiri02] S. Boonsiri, "Automated Component Ensamble Evaluation," International 
Journal of Information technology, Vol 8, No.1, 2002. 

[Booth04] D. Booth, et al. "Web Services Architecture," W3C, 2004. Available 
http://www.w3 .orgITR/20031WD-ws-arch-20030514. 

[Chung03] J. Chung, K. Lin, and RMathieu. "Web Services Computing: Advancing 
Software Interoperability," IEEE Computer Society, Vol. 36, 2003, pp. 35-37. 

[Clements02] P. Clements and L. Northrop, Software Product Lines: Practices and 
Patterns, Addison Wesley, 2002. 

[Cohen98] S. Cohen and L. Northrop, "Object-Oriented Technology and Domain 
Analysis," Proc. International Conference on Software Reuse, Victoria, June 
1998. 

[Coplien98] J. Coplien, D. Hoffman, and D. Weiss. "Commonality and Variability in 
Software Engineering," IEEE Software, 1998, Vol 15, No. 6, pp. 37-45. 

[DeiteI03] H. Deitel, B. DuWaldt, et al. Web Services - A technical Introduction. 
Upper Saddle River, New Jersey, Pearson Education, Inc, 2003. 

[FontanaOl] J. Fontana, "Microsoft, Sun Propel Web Services," Network World, Vo118, 
No.1, 2001, pp. 8-10. 

[Farrukb98] G. Farrukb, "A Method and Software Engineering Environment for 
Configuring Applications from Reusable Specifications and Architectures," PhD 
Dissertation. George Mason University, 1998. 

[Friedlande02] P. Friedlander, D. Collins, "Component-Based Software Development 
and the Software Factory," Infotech Update, Vo110, No2, 2002, pp. 4-9. 

[GladwinO 1] L. Gladwin, "Web Driving Demand for Integrated Apps," Computerworld, 
Vol. 35, No. 17,2001, p. 56. 

[Gomaa96] H. Gomaa, L. Kerschberg, V. Sugumaran, C. Bosch, and I Tavakoli, "A 
Knowledge-Based Software Engineering Environment for Reusable Software 
Requirements and Architectures," I . Automated Software Eng, Vol 3, Nos. 
3/4, 1996. 

[Gomaa96a] H. Gomaa, D. Menasce, and L.Kerschberg. "A Software Architectural 
Design Method for Large-Scale Distributed Information Systems," Distrib. Syst. 
Eng, 1996, Vol. 3, No.3, pp. 162-172. 



www.manaraa.com

207 

[Gomaa99] H. Gomaa and G.A. Farrokh, "Methods and Tools for the Automated 
Configuration of Distributed Applications from Reusable Software 
Architectures and Components," IEE Proceedings - Software, Vol. 146, No.6, 
December 1999. 

[GomaaOO] H. Gomaa, Designing Concurrent, Distributed, and Real-Time 
Applications with UML, Addison Wesley, Reading MA, 2000. 

[GomaaOOa] H. Gomaa, L. Kerschberg, G. Farrokh. "Domain Modeling of Software 
Process Model," IEEE International Conference on Engineering of Complex 
Computer Systems, IEEE Computer Society, Tokyo, Japan, September 2000. 

[Gomaa02] H. Gomaa and Michael E. Shin, "Multiple-View Meta-Modeling of 
Software Product Lines," the Eighth IEEE International Conference on 
Engineering of Complex Computer Systems (ICECCS 2002), Maryland, 
December, 2002. 

[Gomaa04] H. Gomaa, Designing Software Product Lines: From Use Cases to 
Pattern-based Software Architectures with UML 2.0, Addison-Wesley, July 
2004. 

[Govatos02] G. Govatos, "UDDI is Yellow Pages of Web Services," Network World, 
Vol. 19, No. 21, pp. 41, 2002. 

[Greenwood04] P. Greenwood, N . Loughran, L. Blair, A. Rashid, "Dynamic Framed 
Aspects for DynamicSoftware Evolution," 2004. Available: 
http://www.comp.lancs.ac.uklcomputingiaose/papers/dynFr Jamse04. pdf 

[Griss98] M. Griss, 1. Favaro, M. D' Alessandro, "Integrating Feature Modeling with 
the RSEB," Proc. International Conference on Software Reuse, Victoria, June 
1998. 

[Hasimi03] S. Hashimi; "Service-Oriented Architecture Explained," 2003. Available: 
http://www.ondotnet.com/pub/aldotnet/2oo3/08/18/soa _ explained.htmL 

[Hao03] H. He, "What Is Service-Oriented Architecture," 2003. Available: 
http://webservices.xm1.com/pub/alwS/2003/09/30/soa.html. 

[Holmes03] C. Holmes, A. Evans, " A Review of frame Technology," 2003. Available: 
http://www.cs.york.ac.uklftpdir/reportslYCS-2003-369.pdf 

[Howard04] R. Howard, L. Kerschberg, "A Framework for Dynamic Semantic Web 
Services Management," Int. 1. Cooperative Inf Syst., Vol. 13, No.4, 2004, pp. 
441-85 . 



www.manaraa.com

208 

[Hussein03] M. Hussein, "A Software Architecturebased Method and Framework for the 
Design ofDynamicaUy Reconfigurable Product Line Software Architectures," 
PhD Dissertation. George Mason University, 2003. 

[Irek03] C. Irek, "Realizing a Service-Oriented Architecture With .Net," 2003. Available: 
http://www.15seconds.comlissue/031215.htm. 

[Jacobson97] I. Jacobson, M. Griss, P. Jonsson, Software Reuse - Architecture, 
Process and Organization for Business Success, Addison Wesley, 1997. 

[Jarzabek03] S. Jarzabek, P. Bassett, H. Zhang, W. Zhang", "XVCL: XML-based Variant 
Configuration Language," ICSE 2003, pp. 810-811. 

[Kang 90] K. Kang et. al., "Feature-Oriented Domain Analysis," Technical 
Report No. CMU/SEI-90-TR-21, Software Engineering Institute, November 
1990. 

[Kirtland99] M. Kirtland, "Designing Component-Based Applications," Redmond, 
Washington, Microsoft Press, 1999. 

[Lawson 03] A. Lawson, "Semantic Designs - Design Maintenance System Software 
Reengineering Toolkit," Semantic Designs, Inc. 2003. Available: 
http://www.semdesigns.comlCompanylPublicationsiSemantic%20DesigngO/o20-
%20DMS%20SRT%201-1%20(TAOO0243APM).pdf 

[Lee02] K. Lee, W. Kuen. "An Introduction to Aspect-Oriented Programming," COMP 
610E, 2002. 

[Lesaint04] D. Lesaint and G. Papamargarittis, "Aspects for Synthesizing Applications 
by Refinement," LNCS 3107, 2004, pp. 115-126. 

[Lesiecki02] N. Lesiecki, "Improve Modularity with Aspect-Oriented Programming," 
IBM, 2002. Available: http://www-106.ibm.comldeveloperworksllibrary/j
aspectj/. 

[Loughran04a] N. Loughran and A. Rashid, "Framed Aspects: Supporting Variability and 
Configurability for AOP", Proc. 8th International Conference on Software Reuse, 
SpringerLNCS 3107, 2004, pp. 127-140. 

[Loughran04b] N. Loughran, A. Rashid, W. Zhang, S. Jarzabek, "Supporting Product 
Line Evolution with Framed Aspects," 2004. Available: 
http://www.comp.lancs.ac.uk/computing/users/loughranlACP4IS%5Bfinal%5D.p 
df 



www.manaraa.com

209 

[McDougall 01] P. McDougall, J. Levitt. "Decoding Web Services," Information Week, 
issue 857, 2001, pp. 28-37. 

[MillsOO] K. Mills, Hassan Gomaa. "A Knowledge-Based Method for Inferring Sematic 
Concepts from Visual Models of System Behavior," ACM Transaction, Vol. 9, 
No.3, 2000, pp. 306-37. 

[O'Hara98] O'Hara-Schettino, Elizabeth, and Hassan Gomaa. "Dynamic Navigation in 
Multiple View Software Specification and Design, " The Journal of Systems and 
Engineering, Vol 41, 1998, pp. 93-103. 

[pappalarado 01] D. Pappalarado "Start-Ups Aim to Manage Web Services," Network 
World, Vol. 10, No. 40, 2001, pp. 1-2. 

[Rojak 96] S. Rojak, "Domains in Logical Data Modeling," DBMS Online, 1996. 
Available: http://www.dbmsmag.coml9603dI4.html. 

[Seacord03] R. Seacord, K. Nwosu, "Life Cycle Activity Areas for Component-Based 
Software Engineering Process," Carnegie Mellon University and Lucent 
Technology, Inc. 2003. Available: 
http://www.sei. cmu. edu/cbs/tools99/lifecycle/index.html. 

[Shaw96] M. Shaw, D. Garlan, Software Architecture: Perspective on an Emerging 
Discipline, Upper Saddle River, New Jersey, Printice-Hall, 1996. 

[Shin02] E. Shin, "Evolution in Multiple-View Models of Software Product Families," 
PhD Dissertation, George Mason University, 2002. 

[Sodhi99] J. Sodhi, P. Sodhi, Software Reuse: Domain Analysis and Design Process, 
McGraw-Hill, New York, 1999. 

[Sugumaran92] V. Sugumaran, H. Gomaa, and L. Kerschberg, "Generating Target 
System Specifications from a Domain Model Using Clips," Clips Conference 
Proceedings, Houston TX, Vol. 1, 1992, pp. 209-26. 

[parnas79] Parnas D., "Designing Software for Ease of Extension and Contraction," 
IEEE Transactions on Software Engineering, March 1979. 

[Rumbaugh99] J. Rumbaugh, G. Booch, I. Jacobson, The Unified Modeling 
Language Reference Manual, Addison Wesley, Reading MA, 1999. 

[Vizard 01] M. Vizard, "Reuse Grail Is in Sight with Web Services,tt InfoWorld, Vol. 23, 
No. 38, 2001, p. 8. 



www.manaraa.com

[Weiss99] D M Weiss and C T R Lai, Software Product-Line Engineering: A 
Family-Based Software Development Process, Addison Wesley, 1999. 

210 

[Zhang03] H. Zhang, S. Jarzabek, "An XVCL-Based Approach to Software Product Line 
Development," Int. Com. on Software Engineering and Knowledge Engineering, 
2003. 

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

211 

Appendix A: Radio Frequency Management System: A Case 
Study 

A.1 Introduction 

The radio frequency spectrum is used for a very wide variety of wireless 

communications. It is considered a valuable resource that needs to be managed 

efficiently. The Radio Frequency Management system (RFMS) is built to manage the 

distribution of frequencies and to discover frequency interferences and illegal 

transmissions. The RFMS is a software product line that serves different types of 

monitoring stations: main monitoring center (MMC), regional monitoring stations 

(RMS), and mobile monitoring stations (MMS). The RFMS is the second case study for 

software product lines based on web services that is used to validate this research. In this 

case study, a RFMS product line is to be created for different types of monitoring 

stations, which can be customized to the needs of individual stations. The RFMS case 

study applies the software design approach and the three development environments that 

are introduced in this research to create the SPL application. 

The Radio Frequency Management System includes licensing of radio frequencies, 

advance interference calculations, and monitoring radio frequency transmissions to 

ensure compliance with national assignments and regulations. The system comprises of a 

Software Product Line Engineering Based on Web Servicesالعنوان:

Saleh, Mazen M. Aquilالمؤلف الرئيسي:

Gomaa, Hassan(Super.)مؤلفين آخرين:

2005التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

:MD 618453رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

البرمجيات، الإنترنت، تقنية المعلومات، هندسة الحاسباتمواضيع:

https://search.mandumah.com/Record/618453رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618453


www.manaraa.com

211 

Appendix A: Radio Frequency Management System: A Case 
Study 

A.1 Introduction 

The radio frequency spectrum is used for a very wide variety of wireless 

communications. It is considered a valuable resource that needs to be managed 

efficiently. The Radio Frequency Management system (RFMS) is built to manage the 

distribution of frequencies and to discover frequency interferences and illegal 

transmissions. The RFMS is a software product line that serves different types of 

monitoring stations: main monitoring center (MMC), regional monitoring stations 

(RMS), and mobile monitoring stations (MMS). The RFMS is the second case study for 

software product lines based on web services that is used to validate this research. In this 

case study, a RFMS product line is to be created for different types of monitoring 

stations, which can be customized to the needs of individual stations. The RFMS case 

study applies the software design approach and the three development environments that 

are introduced in this research to create the SPL application. 

The Radio Frequency Management System includes licensing of radio frequencies, 

advance interference calculations, and monitoring radio frequency transmissions to 

ensure compliance with national assignments and regulations. The system comprises of a 



www.manaraa.com

212 

main monitoring center and many regional monitoring stations scattered around the 

country. The software operates locally at each station with remote operation facilities 

from the MMC to all other stations. The software for local operations is also available in 

the mobile monitoring stations, which support the activities of the fixed MMC and RMS 

stations. 

A.2 Validation of This Research 

The Radio Frequency Management System case study validates: 

a) Multiple-view design architecture for SPL applications based on web services. 

b) The three development approaches: 

• Dynamic Client Application Customization (DCAC). 

• Dynamic Client Application Customization with Separation of 

Concerns (DCAC-SC). 

• Static Client Application Customization (SCAC). 

c) The proof-of-concept development environment prototype SPLET. 

A.3 Multiple-view Design Architecture 

This section describes the software product line modeling approach for the RFMS 

product lines based on Web Services. 



www.manaraa.com

213 

A.3.1 Use Case Modeling 

Figure A-I depicts the Use Case diagram for the RFMS SPL, which captures the overall 

sofiwarerequirements. The Use Cases are categorized as kernel, optional, or alternative 

as given by the PLUS method [Gomaa04]. 

The actors for this use case model are the users of the product line, providing inputs to a 

product line member system and receiving outputs from it. 

• Monitoring technician - Performs actions pertaining to frequency occupancy 

monitoring, remote monitoring, and occupancy evaluation. 

• Monitoring engineer - Performs actions pertaining to frequency analysis, 

frequency allocation, and interference measurement. 

• Data entry clerk - Performs actions pertaining to data entry of frequency 

allocation. 

Briefly, the use cases are: 

• Radio Frequency Occupancy: Monitoring technician can monitor the spectrum 

for radio frequency occupancy for a period of time. All transmissions within the 

given range are detected and stored for analysis, 

• Frequency Occupancy Evaluation: The result of the frequency occupancy is 

compared to the frequency management database for illegal transmissions. 



www.manaraa.com

~ -----~. RadIO Frequency - --G«kemel>V> «include» «optiona » 
Frequency Occupancy 

Evaluation 
MoniIortIIg 
technician 

Monftaing 
engineer 

Occupanc 

«optiona » 
Frequency Direction 

Findi 

< <optional» 
Remote Monitoring 

«alternative» 
Central Interconnection 

«alternative» 
Regional Interconnection 

«alternative» 
Mobile Interconnection 

«optional» 
Information retrieval 

<:<optiona » 
Frequency Allocation 

Entry 

_ ~incIUde» , . . _----

«kernel» 
Interference 
measurment 

" ,,~~ 
'~~ 

,~ 

Figure A':'l Use case model 

" " 

oata Entry Cfert< 

«optional» 
Cosite Analysis 

«optiona » 
Intermodulation 

Ana sis 

214 

• Remote Monitoring: Monitoring technician in the main monitoring station uses 

the regional monitoring stations to perform remote frequency occupancy tasks. 

• Central Interconnection: Monitoring technician can perform automatic setting 

of monitoring equipments and their related antennas for the mam monitoring 

center. 



www.manaraa.com

215 

• Regional Interconnection: Monitoring technician can perform automatic setting 

of monitoring equipments and their related antennas for the · regional monitoring 

stations. 

• Mobile Interconnection: Monitoring technician can perform automatic setting of 

monitoring equipments and their related antennas for the mobile monitoring 

stations. 

• Information Retrieval: Monitoring engineer can retrieve technical information 

on allocated frequencies and retrieve administrative information regarding 

licensed users. 

• Frequency allocation entry: Data entry clerk enters preliminary frequency data 

to be analyzed by the frequency engineer. 

• Frequency allocation analysis: Monitoring engineer apply Electro Magnetic 

Compatibility (EMC) analysis on the proposed frequency request and take action 

whether to allocate the frequency, or reject it. The EMC analysis is based on 

arithmetic calculations of a proposed frequency against the already allocated 

frequencies in the frequency management database to avoid interference between 

assigned frequencies. 

• Cosite Analysis: The Frequency allocation analysis may include interference 

analysis for frequencies that transmit from the same location. 

• Intermodulation Analysis: The Frequency allocation analysis may include 

interference analysis for frequencies that may cause interference when they are 

modulated with other frequencies in the same coverage area. 



www.manaraa.com

216 

• Interference measurement: The monitoring engineer process an interference 

complaint by coordinating with the monitoring technician to monitor the spectrum 

for all transmissions within a given range, and then perform interference 

measurement tests on suspicious frequencies. Interferences are usually caused by 

illegal transmissions, malfunction of transmitters causing frequency deviation, or 

signal level increase. 

• Frequency Direction finding: Monitoring technician uses the mobile monitoring 

station to locate the source of a transmitter. Finding the direction of a transmission 

is part of the interference measurement tests. 

A.3.2 Feature Modeling 

A feature dependency model is derived from the use case model. Product line features are 

categorized as kernel, optional, or alternative features. Table A-I shows the feature / use 

case dependencies based on the PLUS environment [Gomaa04]. 

Use Case \ 

Feature Name 
Feature Use Case Category / Variation 
Category Name Variation Point Name 

Point (VP) 
MMC Alternative Central Alternative 
Interconnection Interconnection 

RMS Alternative Regional Alternative 
Interconnection Interconnection 

MMS Alternative Mobile Alternative 
Interconnection Interconnection 

Table A-I Feature I Use Case Dependencies 



www.manaraa.com

217 

Use Case 

Feature Name 
Feature Use Case Category / Variation 
Category Name Variation Point Name 

Point (VP) 
Frequency Kernel Radio Frequency Kemel-vP Equipment & 
Occupancy Occupancy Antenna types 
Remote Optional Remote Monitoring Optional-VP Equipment & 
Occupancy Antenna types 
Occupancy Optional Frequency Optional 
Evaluation Occupancy 

Evaluation 
Interference Kernel Interference Kernel-VP Equjpment& 
MeasuremntCalc Measurement Antenna types 
Information Optional Information Optional 
Retrieval Retrieval 
Frequency Optional Frequency Optional 
Allocation Allocation Entry 
EMC Frequency Optional Frequency Optional 
Analysis Allocation Analysis 
Co-Site Analysis Optional Cosite Analysis O_ptional 
Inter-Modulation Optional Intermodulation Optional 
Analysis Analysis 
Direction Optional Frequency Optional 
Finding Direction Finding 

Table A-I Feature I Use Case Dependencies (Continue) 



www.manaraa.com

The feature model in figure A-2 depicts the features of the SPL application. 

RMS Intercomedlon 
I 

I 
I 

I 
I 

I 

I 

--

" I 

rc;::~ 
Figure A-2 SPL feature model 

--

\ 
\ 
\ 
\ 
\ 
\ 
\ 

tnter·modutolioo 
analysis 

218 

The SPL feature model is used as the main driver for customizing the SPL application. 

This model is entered in the SPLET tool to create the feature navigation tree. The feature 

model is used in SPLET to organize all SPL engineering components into their related 

features. The Feature. Selector component in SPLET is used to select optional and 

alternative features from the feature tree when customizing target applications. 



www.manaraa.com

219 

A.3.3 User interface Interaction Modeling 

Since this design method is based on ·a service-oriented architecture for product lines, it is 

important to show the navigation between user interface screens. The navigation model is 

depicted from the feature model. Table A-2 shows the feature / class dependencies in the 

navigation model. 

Feature Name 
Feature 

Class Name 
Class Class 

Category Category Parameter 
Main Kernel MainUI Kernel-VP Title: String 

Customizer Kernel 
MMC Alternative MMCconnect Alternative 
Interconnection 
RMS Alternative RMSconnect Alternative 
Interconnection 
MMS Alternative MMSconnect Alternative 
Interconnection 
Frequency Kernel FreqOccupancy Kernel-VP StationName: 
Occupancy String 

Customizer Kernel 
Remote Optional RemoteOccupancy Optional- StationName: 
Occupancy VP String 

Customizer Kernel 
Occupancy Optional OccupancyEvaluation Optional 
Evaluation 
Interference Kernel InterferenceMeasurement Optional 
MeasuremntCa1c 

Customizer Kernel 
Information Optional InfoRetrieval Optional 
Retrieval FrequencyRetrieval Optional 

UserRetrieval Optional 
Frequency Optional Frequency Alloc Optional 
Allocation Acceptance Optional 
EMC Frequency Optional EMCAnalysis Optional 
Analysis 

Table A-2 Feature I Oass Dependencies 



www.manaraa.com

220 

Feature Name 
Feature 

Class Name 
Class Class 

Category Categ()!1'_ Parameter 
Co-Site Analysis Optional EMCAnalysis Optional 
Inter-Modulation Optional EMCAnalysis Optional 
Analysis 
Direction Optional DirectionFind Optional- StationName: 
Finding VP String 

Customizer Kernel 

Table A-2 Feature I Oass Dependencies (Continue) 

Figure A-3 is a user interface interaction model. It shows the navigation between user 

interfaces. Each user interface screen is supported by a user interface object, which is in 

tum associated with one or more Web services. Each user interface object contains a GUI 

and a customizable workflow for members of the software product line. The GUI will be 

responsible for accepting user input and user requests to initiate events that are translated 

into method calls to web services. After receiving the user input, the user interface object 

interacts with the appropriate Web service. 

Figure A-3 User interface interaction model 



www.manaraa.com

221 

A.3.4 Detailed Design 

A.3.4.1 Main user interface 

Figure A-4 shows a sample GUI for the "MainUI" user interface class. Figure A-5 shows 

a customizable activity diagram for the "MainUf' user interface. This diagram shows 

"MMCconnect", "RMSconnect", and "MMSconnect" user interfaces for 

equipment/antenna connection setup as mutually exclusive alternatives where only one of 

them can be invoked by clicking the Equipment Setup button of "MainUf' user interface 

(Figure A-4). "FreqOccupancy" and "InterferenceMeasurment" are kernel user interfaces. 

The diagram also shows the optional user interfaces: "InfoRetrieval", "FrequencyAlloc", 

and "DirectionFind". 

Figure A-4 User interface - MainUI 



www.manaraa.com

222 

Activity modeling 

Figure A-5 shows all possible activities occumng at the "MainUl" user interface, 

including optional and alternative activities. Feature conditions are used to define 

optional and alternative paths to the customizable workflow. The Equipment Setup button 

of Figure A-4 is used to invoke one of the following alternative user interfaces based on 

the customization process of target application: "MMCconnect", "RMSconnect", or 

"MMSconnect" user interfaces. "FreqOccupancy", "InfoRetrieval", "DirectionFind" and 

"FrequencyAlloc" are optional user interfaces. The buttons related to the invocation of 

these optional user interfaces are either enabled or disabled based on feature selection 

during the customization process of target applications. 

r-=MMC_ 
AND~_-.c 

Figure A-5 Activity diagram - MainUI user interface 



www.manaraa.com

223 

Interaction Modeling 

Figure A-6 shows the customization phase of the "MainUI" user interface for the 

Dynamic Customization of Client Application (DCAC) and the Dynamic Customization 

of Client Application with Separation of Concerns (DCAC-SC) approaches, in which 

customization is done at run time by reading the selected features and parameterized 

variables from the customizer object. 

1 : Start to - f 2:Request feature selection & 
c~lon parameterized variables « kernel» 

«kernel» 
~ <<entity» 

«user interface» :Customizer 
3: Select~tures ;Msillll.!l 

and parameters 

Figure A-6 Customization Phase - MainUI user interface 



www.manaraa.com

224 

Figure A-7 shows the object interaction of "MainUf' user interface. Object interaction is 

based on the activity model, shown in figure A-5, and the description for that model. 

1: Select an adMty 

~ 
<<kome!» 

« variant» 
<<VHf inleIface» 
~ 

""ariant» 
<<user ilterface» 

:RMScon_ 

Figure A-7 Interaction Modeling - MainUI user interface 

A.3.4.2 Equipment/Antenna Setup 

The Radio Frequency Management System is created to support three different types of 

monitoring stations: Main Monitoring Center (MMC), Regional Monitoring Station 

(RMS), and Mobile Monitoring Station (MMS). Each station type contains different 

equipment and antenna setup. Therefore, three alternative user interfaces are developed to 

support the automatic setting of monitoring equipments and their related antennas of each 

station type. Figure A-8 shows the alternative "MMCconnect" user interface used at the 

Main Monitoring Center. 



www.manaraa.com

225 

Figure A-8 EquipementJAntenna setup for MMC 

Activity Modeling 

Figure A-9 shows the activity diagram for "MMCconnect" user interface. It shows two 

possible web service invocations. The first invocation is for reading the current 

equipment/antenna interconnection setup for the Main Monitoring Center and the second 

invocation is for setting the new interconnection changes to the equipment/antenna setup. 



www.manaraa.com

Interaction Modeling 

Call 
InterconneclionVVS.Read 

MMCronneclO 

Apply new setlngs 
sefecled 

Call 
IntefCOllnectionVVS.5et 

MMCconnectO 

Figure A-9 Activity Diagram - MMCconnect UI 

226 

Figure A-IO shows the object interaction for "MMCconnect" user interface of the Main 

Monitoring Center. The user interface has two functions: read the current 

equipment/antenna interconnection and set the new interconnection setup for the Main 

Monitoring Center. 

1 : Request interconnection readings eq I ercon IOn 
~ readings for the MMC « variant» 

<<variant» ~ <<web service» 
<<user interface» : Inte!!tQm:~ctionWS 

3:S~ings :MMCconnect 

2 R uest·nt nect' 

1 : Request interconnection setting 2'Set interconnection 
~ for the MMC « variart» 

«YIUial1t» 
~ «web seNice» 

<<user interface» :lntercoD!]ectionWS 
:MMCcomect ~ 

3: New setup readings 

Figure A-tO Collaboration Diagram - MMCconnect UI 



www.manaraa.com

227 

The regional and mobile monitoring stations have different equipment/antenna types and 

setup. Therefore, reading the equipment/antenna setup and setting the connection 

between the equipment and antennas require different user interfaces and web service 

methods to accomplish the above tasks. The different readings and settings of 

equipment/antenna web service methods are grouped in the Interconnection WS web 

service, as shown in Figure A-II. Web service methods are depicted from the activity 

model of each user interface. 

<<variant» 
«web service» 

InterconnectionVIIS 

ReadMMCconnect() 
ReadRMSconnectO 
ReadMMSconnect() 
SetMMCconnectO 
SetRMSconnectO 
SetMMSconnectO 
RotateD1300 
RotateHL0230 

Figure A-ll InterconnectionWS 

Figure A-I2 shows the alternative "RMSconnect" user interface. It is used to perform 

automatic setting of monitoring equipments and their related antennas at the Regional 

Monitoring Stations (RMS). 



www.manaraa.com

228 

Figure A-12 Equipment/Antenna Setup - RMS 

Activity Modeling 

Figure A-13 shows the activity diagram for "RMSconnect" user interface. It shows two 

possible web service invocations. The first invocation is for reading the current 

equipment/antenna interconnection setup for the Regional Monitoring Station and the 

second invocation is for setting the new interconnection changes to the 

equipment/antenna setup. 



www.manaraa.com

Interaction Modeling 

Read settings selected 

Call 
InterronnectionWS.Read 

RMSconnectO 

Apply new settings 
selected 

Call 
InterconnectionWS.Set 

RMSconnectO 

Figure A-13 Activity Diagram - RMSconnect UI 

229 

Figure A-I4 shows the object interaction for "RMSconnect" user interface. The user 

interface has two functions: read the current equipment/antenna interconnection and set 

the new interconnection setup for the Regional Monitoring Station. 

1: Request interconnection readings 

~ 1.----------.1 «wriant>:> 
<<user interface» I :RMSconnect 1 

1: Request interconnection setting 

~ 1.----<_-·-> -----'1 
<<user interfaCe» 

IL_=:R~M:,::Sco~nne~ct~J 

2· Request interconnection 
readings for the RMS 
~ 

3: Setu~dings 

2:Set interconnection 
for the RMS 
~ 

3: New setup readings 

« variant» <--:lnterconnectionWS 

«varianP> 
<46'eb service» 

:lnterconnectionWS 

Figure A-14 Collaboration Diagram - RMSconnect UI 

Figure A-I5 shows the alternative "MMSconnect" user interface. It is used to perform 

automatic setting of monitoring equipments and their related antennas at the Mobile 

Monitoring Stations (MMS). 



www.manaraa.com

230 

Figure A-1S Equipment! Antenna Setup - MMS 

Activity Modeling 

Figure A-16 shows the activity diagram for "MMSconnect" user interface. It shows two 

possible web service invocations. The first invocation is for reading the current 

equipment/antenna interconnection setup for the Mobile Monitoring Station and the 

second invocation is for setting the new interconnection changes to the 

equipment/antenna setup. 



www.manaraa.com

Call 
In1erconnectionWS.Read 

MMSconnectO 

Apply new settings 
selected 

Call 
I n1erconnectionWS. Set 

MMSconnect() 

Figure A-16 Activity Diagram - MMSconnect UI 

Interaction Modeling 

231 

Figure A-I? shows the object interaction for "MMSconnect" user interface. The user 

interface has two functions: read the current equipment/antenna interconnection and set 

the new interconnection setup for the Mobile Monitoring Station. 

1: Request interconnection readings 2"Request interconnection 
~ readings for the MMS <:< variant» 

<<variant» ~ <<web service» 
<<user interface» :lnterconnectionWS 

3:Set~ings :MMS!;;Qmect 

1 : Request interconnection setting 2 Set·nte I rconne cf IOn 
~ for the MMS « variaIt» 

<<Variant» 
~ «web service'» 

<<user interface» :Interconnectionws 
:MMSconnect ~ 

3: New setup readings 

Figure A-17 Collaboration Diagram - MMS 



www.manaraa.com

232 

A.3.4.3 Interference Measurement 

The Interference Measurement user interface is used to process interference complaints 

by performing interference measurement tests on suspicious frequencies. Interferences 

are usually caused by illegal transmissions, malfunction of transmitters causing frequency 

deviation, or signal level increase. Figure A-18 shows the Interference Measurement user 

interface. 

Figure A-I8 Interference Measurement U1 



www.manaraa.com

233 

Activity Modeling 

The "InterferenceMeasurement" user interface is used to perform frequency interference 

calculations and run equipment calibration tests. The calculations are: frequency 

deviation, signal level, and frequency modulation. The equipment calibration function is 

used to test if measuring equipments used in the calculation tests are calibrated or need 

maintenance service. Also, this user interface allows users to rotate the appropriate 

antenna~ before running the measurement tests. 

Figure A-19 shows the activity diagram for "InterferenceMeasurement" user interface. 

Figure A-19 Activity Diagram - InterferenceMeasurement UI 



www.manaraa.com

234 

The above activity model shows the frequency deviation test is conducted using one of 

the following equipments: HP8587 A spectrum analyzer, HP8588B spectrum analyzer, or 

ESM500 receiver. The feature conditions show that the spectrum analyzer HP8587 A is 

associated with the MMC Interconnection and RMS Interconnection features. The 

spectrum analyzer HP858BA is associated with the MMC Interconnection and MMS 

Interconnection features. The ESM500 receiver is used by all type of stations. 

The antenna rotation in the activity model shows two types of antennas: D 130 and 

HL023. The feature conditions show that the D130 antenna is associated with the MMC 

Interconnection and RMS Interconnection features, while the D 130 is associated with 

only the MMS Interconnection feature. Based on feature selection, the appropriate 

antenna is used in the antenna rotation activity. 

Interaction Modeling 

Figure A-20 shows the customization of the "InterferenceMeasurement" user interface 

for the DCAC and the DCAC-SC approaches, in which customization is done at run time 

by reading the selected features and parameterized variables from the customizer object. 

1: Start sID . ti 2:Request feature selection & 
cu~a on parameterized variables « kernel» 

«kernel» -----7 «entity» 
«user interface» :Customizer :Interference 3: Return ~ation Measurement 

Figure A-20 Customization Phase - InterferenceMeasurement UI 



www.manaraa.com

235 

Figure A-21 shows the collaboration diagrams for the "InterferenceMeasurement" user 

interface. The collaboration diagrams are based on the activity model of Figure A-19. 

They show the object interaction for the following activities: run deviation test, run 

modulation test, run signal level test, run calibration test, and rotate antenna. Also, web 

service objects are depicted from the activity model. 

1: Initiate frequency deviation test 
using the peel Iy s rum ana zer 
~ 

<<kernel» 
<<user interface» 
:lnterfereDS;! 
Mea~[@ment 

1: Re quest modulation test 
~ 

<<kernel» 
<<user irterfaoe» 

: Interference 
M!ilasuremel1 

1: Req uest signal level test 
~ 

<<kernel» 
«user nerface» 
:1~!f!il~1l!l!i: 
Mea!ii!,![!il!Il!ml 

1:Req uest calibration test 
<<kernel» 

~ <<user interfaoe» 
:Interference 
Measur~11 

1: Request antenna rotation 
~ <<kernel» 

<<user interface» 
:Imerferen!al 

Measur§!ll!lm 

2A Run Freq. deviation lest 
with HP8561 A analyzer 

28: Run Freq, deviation lest 
WITh HP85678 analyzer 

2C' Run F req deviation lest 
with ESM500 receiver 
~ 

~ 
3: Fre . deviation result q 

2: Run modulation test 

~ 

«vaiant» 
<<web seNIce» 

:lnterferenceMeasuremenlWS 

« kernel» 
«web service> > 

~, ' IDterteteOO!MUliY~!!I!l!.!tWS 
3: Return modulation 

resul 

2' Run signal level test 
« kernel» 

~ « web service> > 
(;-- ' IDI!!!f!!!l!Ill<l!Ml!lIl;U~!!I!l!.!1llllS 

3: Return signal level 
result 

2' Run equipment 
calibration test 

~ 

~bra' 3: Return Call !jon 

resul 

2A: Rotate HL023 antenna 
29: Rotate 0130 antenna 

~ 

~ 
3: confirmation 

« kernel» 
<<web service» 
'CalibrationWS 

«vwiant» 
<<web service» 

InterconnectioWS 
,RotateHL023() 

Figure A-21 Collaboration Diagram - Frequency Deviation 



www.manaraa.com

236 

A.3.S Web Services Modeling 

From the activity modeling, all possible service requests are identified. These services are 

organized and grouped into related web services based on their objects interaction, 

described in section 3.4. Figure A-22 shows a sample grouping of methods into Web 

Services. 

«variant» 
«web service» 

InterconnectklnWS 

ReadMMCconnect() 
ReadRMSconnect() 
ReadMMSconnect() 
SetMMCconnect() 
SetRMSconnect() 
SetMMSconnect() 
Rotate0130() 
RotateHL023() 

""optional» 
< "Web service» 

FreqAllocWS 

FreqEntJy() 
UserEntryO 
Acceptance() 

<<variant» 
<"Web service» 
Occupancyws 

OccHP255A() 
OccHP255B() 
OccEvaluation() 
RemoteOccO 

«kernel» 
«web service» 

CalibrationWS 

EQcalibration() 

""optional» 
«web servioe» 
EMCanalysisWS 

CoSiteO 
FrequencyO 
Intermodulation() 

«kernel» 
«web service» 

InterferenceMeasurrnentWS 

DevHP8567 A() 
DevHP8568B() 
DevESM500() 
ModESM500() 
SigESM500() 

Figure A-22 Web Service Modeling 

«optional» 
«webservioe» 

RetrievalWS 

UserRetrievalO 
FrequencyRetrieval() 

""optional» 
«web service» 

DirectionFindingWS 

FindFreqDirO 



www.manaraa.com

237 

A.4. SPL development 

This section applies the three development approaches for software product line based on 

web services to the Radio Frequency Management System (RFMS) case study. The 

"MainUI" user interface is used as an example for the development of each approach. 

This user interface object is customized to derive target applications using the SPLET 

tool. Figure A-23 shows the same activity diagram for the "MainUI" user interface 

described in section 3.4. The activity diagram is used to show all possible feature 

variation for derived applications. The feature guards are used in the development of the 

product line to apply customization decisions either during run time or during source 

code integration. 

(F-.o = MIlle InIIIn:onnocIio 
AND ~_"'ecIodJ 

«kernel» 
«user irterface» 

Invoke 
FrequencyOccupancy UI 

Figure A-23 Activity diagram - MainUI user interface 



www.manaraa.com

238 

A.4.1 Dynamic Customization of Client Application (DCAC) approach 

This section applies the DCAC approach to the RFMS case study, where target 

applications are dynamically customized at run time. Figure A-24 shows a sample 

implementation for the "MainUf' user interface. The source code sample shows how 

alternative and optional features are treated in the source code. 

Public class MainUI 
( 

public MainU~) 
( 

customizer Cst" new Customizet() ; 

boo! mmcCon. rmsCon, mm9Con, dilAnd, freqAlloq, irtoRet ; 

mmccon = Cst.leatureSelectlon(MMClntorconneclion) ; 
rmscon = CstfeatureSelectlon(RMSIn1erconneclion); 
mmSCon = CstfeatureSeIeclion(MMSlnterconnection) ; 
dirFind = CstreatureSelectlon(DlrecllonFinding) ; 
freqAlloc = CstfeatureSelectlon(FrequencyAllocation) ; 
infoRet = CstfeatureSeIectlon(lnformationRelrleval) ; 

II DiSplay ALL GUI componen1B 

MainTitieText = Cs.varSelection(MainUITdIe)=:J 

t (drFind = "Y") 
{ ~Q'~ 

II Create Direction ftnding buItDn 
bDifFindinlLbuItDn.vIslbIe" true; 

~ 
II enable OPTIONAL butIon ~ 

} 
r (freqAJloc == "Y") 
{ 

II Create Frequency Allocation button 
bFreqAlIoc_butllln.vlsible = true; II enable OPTIONAL butIon 

} 
W (inforRet == "Y") 
{ 

II Create Informa1lon Retrieval butlDn 
bRetieYaLbuIIon.vislble " true; II enable OPTiONAl buIkln 

} 
} 
private void bSetup_button_dlcI«) 
{ 

if (mmcCon == "Y") 
II dip4ay MMCcomec1: UI ___ 1c...1 cI=Icked="-., c.:inv:..::ok=e:...:M",M;;..:Cco=mec1:=-=-,-,U:..;.I-+ _ _ 

~:d~~;;~UI ____ 2rt~~~U·~~~~~~==t:~ 
else If(mmSCon == "Y") 
II display MMSconnect UI 

} 
private void bDirAndinlLbul1on_click() 
{ 

II display Direction finding UI 
} 
private void bFreqAlIoc_bullDn_click() 
{ 

II display Frequency ADocation UI 
} 
private void bRellievaLbuIIon_click() 
{ 

II display Information Retrieval UI 

Public class CUstDmizer 
{ 

public CUstDmizerQ 
{ 

_ WOr1<ing 
Arraysltable 

public boolean featureSeleclion( featureName) 
{ 

bool b; 
II b = read feature selection (YIN) from FeatureTabie WHERE 

II fealure = _eName 

return b 
I 

Public string varSelection( VarlableName ) 
{ 

stringvar ; 
II var= readvarValuelrOmvariabiesTabie 
II WHERE varName" VariableName 

retumvar; 
} 

Figure A-24 DCAC Implementation - MainUI user interl'ace 



www.manaraa.com

239 

The "MainUf' user interface is customized by reading the feature selection and the value 

of parameterized variables from the customizer object to enable or disable buttons and set 

appropriate display variables. Its workflow is customized by setting features to true or 

false and applies settings to feature conditions on which user interface to call or which 

web service to invoke. The following section explains the customization in more detail. 

A.4.1.1 Customization of client application at run time: 

• Object MainUI is customized by reading the feature selections stored in the 

customizer object and stores them in local variables, where they will be used 

throughout the MainUI object. Local feature variables mmcCon, rmsCon, 

mmsCon, dirFind, freqAlloc, and infoRet store the MMC Interconnection, RMS 

Interconnection, MMS Interconnection, Direction Finding, Frequency Allocation, 

and Information Retrieval feature decisions respectively and are set to "Y" or 

''N', depending on whether the feature is selected or not. 

• During the customization process, optional button "Direction Finding" is created 

if dirFind is equal to "Y" and ignored otherwise. 

if (dirFind == "Y'j 
II Create Direction Finding button 
bDirFinding_ button. visible = true; 



www.manaraa.com

240 

• During the customization process, optional button "Frequency Allocation" IS 

created if freqAlloc is equal to "Y" and ignored otherwise. 

if (freqAlIoc == "Y'j 
II Create Frequency Allocation button 
bFreqAlloc _button. visible = true; 

• During the customization process, optional button "Information Retrieval" is 

created if infoRet is equal to "Y" and ignored otherwise. 

if (in/oRet == 'T'j 
II Create Information Retrieval button 
bRetrieval_button.visible = true; 

• During the customization process, the parameterized variable MainUITitle is read 

from the customizer object to set the appropriate header title of the "MainVI" 

user interface. 

MainTitle.Text = Cst.varSelection(MainUITitle); 



www.manaraa.com

241 

A.4.1.2 User interface object interaction: 

After the dynamic customization process is complete, the "MainUI" user interface is 

ready to accept user input. 

• If Equipment Setup button is invoked, "MMCconnect" ill, "RMSconnect" ill, or 

"MMSconnect" ill will be called, depending on whether MMC Interconnection, 

RMS Interconnection, or MMS Interconnection feature is selected. 

if(mmcCon == "Y'j 
II diplay MMCconnect UI 

else if(rmsCon == "Y'j 
II display RMSconnect UI 

else if(mmsCon = = "Y'j 
II display MMSconnect UI 

• If Direction Finding button is enabled and invoked, "DirectionFind" ill will be 

called. 

private void block Res button clickO - -
{ 

II display BlockReservation UI 
} 

• If Frequency Allocation button is enabled and invoked, "FrequencyAlloc" ill 

will be called. 

private void bFreqAlloc _button _ clickO 
{ 

II display FrequencyAlloc UI 
} 



www.manaraa.com

242 

• If Information Retrieval button is enabled and invoked, "InfoRetrieval" UI will 

be called. 

private void bRetrieval button c1ickO - -
{ 

/ / display InjoRetrieval VI 
} 

A.4.2 Dynamic Customization of Client Application with Separation of 
Concerns (DCAC-SC) approach 

This section applies the DCAC-SC approach to the RFMS case study to include 

separation of concerns, which is not addressed in the DCAC approach. Figure A-25 

shows a sample implementation for the "MainUI" user interface. The source code sample 

shows the separation of concerns between kernel source code and variable source code. 

The separated source code is then integrated with kernel source code during the code 

weaving process using the proof-of-concept SPLET environment. The result of the 

weaving process is the combined source code for the entire software product line 

including all optional and alternative source code. The code weaving process and 

compilation are performed only once to generate an executable SPL system containing all 

kernel and variable source code. Target systems will rely on the dynamic client 

application customization at system run time, the source code of which is identical to that 

produced by the first approach (DCAC). 



www.manaraa.com

243 

The proof-of-concept prototype environment SPLET is used for separation of concerns 

and the integration of variable source code with kernel source code. Variable source code 

is created using the Variable Source Code Editor component of SPLET, described in 

Chapter 6 in section 6.2.3.1. The integration process is based on the dynamic method in 

the Code Weaver component ofSPLET, described in Chapter 6 in section 6.2.3.3. 

Kernel soun:e code 
Public eta .. MoinUI 
{ 

pubIC lIIinu~) 
{ 

J 

Custorn2« Cst = new CUsIomizeI() ; 

boo! mmcCon, nnsCon, mmsCon, difFond, fteqAiIoq. infDRei ; 

mmccon= Cst. __ on(lIMC"""' .... _) ; 
nnsCon = Cst. __ (RMSlnIer<onneclionj ; 
rnmsCoo=Cst.feaIuroSeIection(llMSI __ ); 
MOld = Cst._(DirediooFinding); 
1teqAiIoc = Cst.l!abnSelectioo(F,"",elll:YAlocalion); 
inbRei = CslfealureSel_(lnfunnalionRetrieval) ; 

II Display ALL 001_ 

$START dirFndBt-. 

$START hqAIIocBullon 

$STARTirfoReIBuIton 

$START IlirfindUl 

prlwte void bFreqAloc_buIIoo_cicl!O 
{ 

$START1teqAiIocU1 
I 
prlwte void bReIri .... ..buI!o.UickO 
I 

$STARTirfoRelUl 

Yariable souroe code lie 
$FEA'lURElDinc:lionfinding] 

$START <lrFindButloo 
~ dirfind ="Y") 
I H Creole Diredlan _ 

bDirF .. dinll,JIUttoo'::ll. =Irue; _di'FiulIBuIton 
$START <lrFindUl 

Dir_nd df-new Dir_FlIId() ; 

$END~~~i 

II .... bIe OPTIONAL buIIon 

$ENDFEA~ 
HHHIIHIIUlllIIUIINlIlIHIIHRlIHllIHIIHlIlIHHHlIlIUnmUIIUDUHHllllllnnmnl 

$FEA'lUREIF_AIIotationl 

$START 1teqAiIocButton 
~ 1teqAiIoc ="Y") 

{ II Creole Frequency AIocaIion buIIon 
bFreqAIoc_bulton.Yi_ = !rue; 1/ enable OI'TlONAL bub> 

_ hqAIIocButlon 

$START1teqAiIocU1 
FreqAloc fa = new FroqAlIoc() ; 

$ENDIa~~1 

=N;;::::I~=J-_HHIIUIIIIIIIHH 
$FEA'lUREPnfomali_.".q 

$STARTinilReIBuIton 
;.: inilrRei ~"Y") 
I DCreatel_onR __ 

bRetienl _._-!rue; DenobIeOPTlONAL_ 

_irfo~ 
$START inI>ReIlll 1 __ r= new lnfoReIrievaI(); 

$END r;;:~i, 

1f:::=;::=~1HI1I1HDHHHIIHDIIIIHfIIOI/D 
$FEA'lUREII1ERAC~"'COI'''-'_''''''-'_~ 

$START set..,c-
W (mmcC<>n = "Y") 

1/ dipIay MMCoonnecl UI 
else i~nnsCon ="Y") 

R display RlISconnecl UI 
else '-mm.con ="Y") 
"displily MMSeonnect UI 

$END setupCon 

_EA'IUR_ACTI~on._IteiCOOio_ ... _Itei""._onl 

Figure A-25 DCAC-SC Implementation- Main Re$ervation UI 



www.manaraa.com

244 

Based on the DCAC-SC approach, all optional and alternative feature source code in the 

variable source code file is integrated with the kernel source code at the location of the 

insertion point, using the dynamic method of integration in the Code Weaver component. 

For example, the insertion point $ST~T dirFindButton refers to the optional feature 

"DirectionFinding" in the variable source code file. The variable source code will be 

inserted in the kernel "MainUf' user interface class at the place of the insertion point: 

$START diFindButton. At run time, this button will be either visible or invisible based on 

feature selection. The SPL application is customized at run time using a customization 

file that is produced by the Feature Selector, Consistency Checker, and Customization 

File Generator components of SPLET. 



www.manaraa.com

245 

Public class MainlJl 
{ 

public MainlJlO 
{ 

CustomiZer Cst = new Customizer() ; 

bool mmcCon, rmsCon, mmsCon, dirFind, freqAlloq, infoRet ; 

mmcCon = CstfeatureSelection(MMClnterconnection); 
rmsCon = CstfeatureSelection(RMSlnterconnection); 
mmsCon = CstfeatureSefection(MMSlnterronnection); 
dirFind = Cst.featureSelection(DirectionFinding) ; 
freqAlfoc = Cst featureSelection(FrequencyAifocation) ; 
infoRet = Cst featureSelection(lnformationRetrievaQ ; 

/I Display ALL GUI components 

MainTitIe.Text = Cs.varSelection(MainUITrtIe); 

/I $START dirFmdButton 
if (dirf'"md == "Y") -

{ Valiable source code inserted of 
If Create Direction finding bullion $START dirFindButIon 
bDirf'"mdinLbutton.visibie .. tnMl; II enable 0PJ10NAL buUon insertion point where DirectionFinding 

} feature is selected -
/I $START freqARocButton 
if (freqAJloc = "Y") - Variable source code inserted of 
{ $START freqAllocButIon 

II Create Frequency Allocation butlDn insertion point where 
bFreqAlbUJUtIIDll.visibie = flue; II_bIe OPTIONAL button FrequencyAllocation feature is selected 

} -

/I $START infoRetButIon Valiable source code inserted of 

if (InforRet - "Y") 
- $START infoRetButton 

{ insertion point where 
II Create Infannation Retrieval buIIon InformationRetrieval feature is selected 
bRetievaLbutton.visibie = flue; II enable OPTIONAL butIDn 

} -
} 
private void bSetup_button_clickO 

Valiable source code inserted of { 
/I $START setupCon 

- $START setupCon 
if (mmcCon - "Y") insertion point where 

II diplay MMCconned: UI MMOnterconnection, 
else if(rmsCon == "Y"J RMSlnterconnection, or 

11 display RMSconned: UI MMSlnterconnection feature is selected 
else if(mmsCon = "Y"J 
II display MMSconneet UI -} Valiable source code inserted of 

frivate void bDirFindinILbutton_clickO $START DirFindUI 
insertion point ..were Direction Rnnding 

II $START DirRndUl feature is selected 
DirectionFind df = new DirectionFind(); 
df.5how() ; 

} 
Valiable source code inserted of private void bFreqAlIoc button clickO 

{ - - $STARTfreqAllocUl 
/I $START freqAlfocUl insertion point where 
F~ fa = new FreqAIIoc()' FrequencyAllocation feature is selected 
fa.5 aw(); , 

} 
private void bRetrieval button clickO 

Variable source code inserted of { - -
/I $START infoRetlJI $START infoRetlJl 
InfoRelrievai ir .. new 1nfqRetrieva1() ; insertion point where 
ir.5haw() ; InformationRetrieval feature is selected 

} 

Figure A-26 Integrated Source Code - MainUI 



www.manaraa.com

246 

Figure A-26 shows the "MainUI" user interface class after the integration process using 

the Code Weaver component. Inserted blocks are: 

• Insertion point $START dirFindButton in the kernel source code is replaced 

with the following source code from the variable source code file: 

II $STARTdirFindButton 
if (dirFind = = 'T') 
{ 

I I Create Direction finding button 
bDirFinding_ button. visible = true; II enable OPTIONAL button 

} 

• Insertion point $START freqAllocButton in the kernel source code is replaced 

with the following source code from the variable source code file: 

II $ST ART freqAllocButton 
if (freqAlloc == "Y') 
{ 

II Create Frequency Allocation button 
bFreqAlloc _button. visible = true; II enable OPTIONAL button 

} 

• Insertion point $START infoRetButton in the kernel source code is replaced 

with the following source code from the variable source code file: 

II $START infoRetButton 
if (infoRet = = "Y') 
{ 

I I Create Information Retrieval button 
bRetieval_button.visible = true; II enable OPTIONAL button 

} 

• Insertion point $ST ART setupCon in the kernel source code is replaced with 

the following source code from the variable source code file: 



www.manaraa.com

II $START setuCon 
if(mmcCon = = "Y'j 

II diplay MMCconnect UI 
else if(rmsCon = = "Y'j 

I I display RMSconnect UI 
else if(mmsCon = = "Y'j 

I I display MMSconnect UI 

247 

• Insertion point $START DirFindUI in the kernel source code is replaced with 

the following source code from the variable source code file: 

II $START DirFindUI 
DirectionFind df = new DirectionFindO .. 
DfshowO .. 

• Insertion point $START freqAllocUI in the kernel source code is replaced 

with the following source code from the variable source code file: 

II $START freqAllocUI 
FreqAlloc fa = new FreqAllocO .. 
fa.showO .. 

• Insertion point $START infoRetUI in the kernel source code is replaced with 

the following source code from the variable source code file: 

II $START infoRetUI 
InfoRetrieval ir = new InfoRetrievalO .. 
ir.showO .. 



www.manaraa.com

248 

A.4.3 Static Customization of Client Application (SCAC) approach 

This section applies the SCAC approach to the RFMS case study. In this approach, only 

source code related to selected features is integrated with kernel source code. Figure A-27 

shows a sample implementation for the "MainUf' user interface. The source code sample 

shows both the kernel source code and optional and alternative source code in the 

variable source code file. Insertion points are the key for integrating kernel source code 

and variable source code. If an optional or an alternative feature is selected, its related 

source code from the variable source code file is inserted in the target application at the 

location of the insertion point. 

The proof-of-concept prototype environment SPLET is used to create the separation of 

concerns and the integration of variable source code with kernel source code. Variable 

source code is created using the Variable Source Code Editor component of SPLET, 

described in Chapter 6 in section 6.2.3.1. The integration process is based on the static 

method in the Code Weaver component of SPLET, described in Chapter 6 in section 

6.2.3.3. 



www.manaraa.com

I(emeI source code 

Public cia .. MainOI 
{ 

pulllOMainOI() 
{ 

eu_erCsl-new~); 

booI mmcCon, rmoCoo, mmsCon, dlrfind. hqAIoq, intJRet; 

$START~_ 

$START dlrFondBuaan 

$START teqAIocBIJIIOll 

$STARTiofoR_ 

$START iofoRetUl 

249 

Variable soun:e code lie 

$START dlFmdBuII ... 

~8~~='~~; 
SEND dlrFlndlP 

11_ OPTIONAl. buIIon 

$START dlrFindUl 
D_Rnddl~ _o;o-.And(); 

SEND~; 

SENDFEA1IJIIQJioedioo'A ..... 'III 
888118 .......... ",,. .. ,,,,,,,.,,,.,,'''liliiii1''111 •• ' .. '1 

$STARThqAIocI!odDo 8CroafeF"",, __ _ 

bFreqAIoo; touIIDn._ = true· 
$END teqAloc - • 

11 .. _ OPTIONAl button 

$STARThqAIox:Ul 
F,..q\Ioc fa = new FroqAIoc() ; 

SIIIDfa~, 

PTART intJRetllullm D Croafelnllmoalion R __ 

bRetie¥aI bunon_vistie ~ he; /I enable OPTIONAL tukJn 
$END iofoRet -

$START inIoReIIJl __ ir=newloofoReIrie¥II() ; 

$ENDir=i 

=::J,~=JIIIfIIIII"IIIIIIIIIIHIIRIIRln/iH 
SFEA1UREIN1ERAC~connocIIon,R_"'.OI_'_"' __ ~ 

$START -..,con 
IFFEA~onnocIionJ 

IIMCcono1ect iIiIJiC = new MMCeOn-o 
omoc.slo<M() ; 

a.s::~~~~== 
..... .sIo<M() ; 

EUlBFFEA~"'J 
IIMScoMed: rmtS == new MMSconnec:tO 
nms.sloow() ; 

=::1J:fi::, .. ",1111 

SSTART_ 

F~~cenIor"; 
ELSEFFEA1UR""~l 
_Tode.Te>t""Regiooal~_·; 

EUlElFFEA~J SEND::=i!Ol<I = "MOllIe MonIIGrfoog SIiIJoo'; 

lURElNlERAC 

____ 01. 

Figure A-27 SCAC Implementation - Main Reservation UI 

Based on the SCAC approach, only · selected optional and alternative source code from 

the variable source code file is integrated with the kernel source code at the location of 

the insertion point using the static method of integration in the Code Weaver component. 

For example, the insertion point $START infoRetButton refers to the optional feature 



www.manaraa.com

250 

"InfonnationRetrieval" in the variable source code file. Only if this feature is selected 

using the Feature Selector component will the variable source code be inserted in the 

kernel "MainUI", user interface class at the place of the insertion point: 

$STARTirifoRetButton. 

Kernel source code 

Public class MainUI 
{ 

public MainU10 
{ 

Customizer Cst = new Customizer() ; 

bool mmcCon, rmsCon, mmsCon, dirFind, freqAlloq, irtoRet ; 

"Display ALL GUI components 

I/$START MainUltitle 
Mainntle.Text = "Regional Monitoring station" ; 

II $START dirFindButton /I No code insertion 

" $ST ART freqAlloc8utton /I No code insertion 

" $START infoRetButton 
1/ Create information Retrieval button 
bRetieYaLbutton.visible = true; II enable OPTIONAL button 

} 
private void bSetup _button_click() 
{ 

} 

$ST ART setupCon 
RMSconnec:t rms = new RMSconnec:tO 
nns.show() ; 

private void bDirFindill!Lbutton_click() 
{ 

/I $START DirFindUl /I No code insertion 
} 
private void bFreqAlloc _button_click() 
{ 

" $START freqAllocU1 " No code insertion 
} 
private void bRetrieval_button_clickO 
{ 

$START infoRetUI 
InfoRetrlevallr = new InfoRetrieval() ; 
ir.Show() ; 

Variable source code inserted of 
14-+---1 $START MainUltitle 

insertion point where 
RMSlnterconnection feature is selected 

Varfable source code inserted of 
14-+---1 $START irtoRetButton 

insertion point where 
lnformationRetrieval feature is selected 

Variable source code inserted of 
$START setupCon 

+4--!---1 insertion point where 
RMSlnterconnection feature is selected 

Variable source code inserted of 
$START infoRetul 

I-++----j insertion point where 
InformationRetrieval feature is selected 

Figure A-28 Integrated Source Code - MainUI 



www.manaraa.com

251 

Figure A-28 shows the "MainUI" user interface class after the integration process. In this 

example, the optional feature "InformationRetrieval" and the alternative feature "RMS 

Interconnection" are selected. The source code related to these feature is inserted in the 

kernel source code. The other features are not selected. Hence, their related source code 

is ignored during the integration process using the Code Weaver component. Inserted 

blocks are: 

• Insertion point $START MainUItitle in the kernel source code is replaced by 

the following source code from the variable source code file: 

II $START MainUItitle 
MainTitle. Text = "Regional Monitoring Station" ; 

• Insertion point $START InfoRetButton in the kernel source code is replaced 

by the following source code from the variable source code file: 

II SST ART InfoRetButton 
II CreateIinformation Retrieval Button 
bRetrieval_button.visible = true; 

• Insertion point $START setupCon in the kernel source code is replaced by the 

following source code from the variable source code file: 

II $START setupCon 
RMSconnect rms = new RM$connectO; 
Rms.ShowO; 

• Insertion point $START infoRetUI in the kernel source code is replaced by 

the following code from the variable source code file: 

II $START infoRetUI 
InfoRetrieval ir = new In!oRetrievaIO; 
ir.ShowO; 



www.manaraa.com

252 

A.4.4 Summary 

The Radio Frequency Management Systems is the second case study used to validate this 

research. This case study first modeled the multiple-views of the RFMS product line. Use 

case model, feature model, navigation model, GUls, activity diagrams, and collaboration 

diagrams were used to design the RFMS product line. The design was then translated into 

implementation source code based on each of the three development approaches that are 

introduced in this research: Dynamic Client application Customization (DCAC), 

Dynamic Client application Customization with Separation of Concerns (DCAC-SC), and 

Static Client Application Customization (SCAC). The implementation source code of the 

three development approaches was customized to generate target applications from the 

product line. 



www.manaraa.com

Appendix B: Development Environment Patterns 

B.1 Introduction 

This chapter lists the patterns used in the three software development environments, 

described in sections 5.2, 5.4, and 5.5, to support the automatic customization of SPL 

architecture and components: 

B2. Dynamic Client Application Customization (DCAC) 

253 

B3. Dynamic Client Application Customization with separation of concerns (DCAC

SC) 

B4. Static Client Application Customization with separation of concerns (SCAC) 



www.manaraa.com

8.2 Dynamic Client Application Customization Pattern 

Dynamic Client Application Customization Pattern 
Intent 
Provide a consistent reusable solution to the implementation architecture of a 
client/server software product line using web services with provision for dynamic 
client application customization. 

Motivation 
The goal of developing software product lines is to promote flexible software 
reuse. With the introduction of web services to SPLs, there is a need for 
developing a systematic approach that enables developers to implement a 
customizable system that can be dynamically customized into many single target 
systems without the need to modify any of the source code. Using the feature 
selector component, user interfaces and workflows of SPL systems can be 
automatically adjusted at run time to serve a single target system. 

Solution 
The idea behind the (DCAC) pattern is the development of dynamic client 
application that can be customized at system run time. 

The DCAC Pattern has two main steps: 
3. SPL Customization 
4. Target application interaction 

Step 1: SPL Customization 
This step involves selecting desired optional and alternative features to be 
included in the target system. The feature · selector component provides a facility 
to make feature selection from a SPL model and run consistency checks to verify 
selections. Once features are selected, selection information wi1l be stored in the 
customization file by the customization file generator. The dynamic client 
application is customized by reading the customization file at run time. 

254 



www.manaraa.com

(DCAC pattern -Continue) 

Components description: 
• Feature selector: Allows users to selects desired features, and allows entry 

for parameterized variable values. 
• Consistency checker: Verifies feature selection. 
• Customization file generator: Generates a customization file for each 

target system. 
• SPL model database: Contains feature tree, featute relations, analysis 

model, design model, components, and parameterized variables. 
• Customization file: Contains feature name, feature selection status 

(true/false) and values of parameterized variables. 

Dynamics 
The following scenario depicts the customization process of a target system: 

• Application engineer selects desired features for a target system using 
feature selector component. 

• Consistency checker is invoked to verify selection by consulting the SPL 
model. 

• Generate a customization file, which will be used by the client application 
for dynamic customization at run time. 

AppIiCa1ion 
en"neer 

I Feature selector I 

Select large! sysJ' 
fea1IJres and ent ... 

values of parameterIZed 
varil!lbles 

Customization file 
generator 

Verify 

Invd<e 

255 



www.manaraa.com

(DCAC pattern - Continue) 

I Feature editor 11 Invoke .. 11 Consistency 1 Verify .. ~ 
l ~ I checker J1 1~ 

~ 
~1 

I 
Customization file I 

generator 11 

Step 2: Target application interaction 

Generate.. '-- ..--/ 
1 .. * Customization 

File 

The Dynamic Client Application Customization (DCAC) Pattern divides an 
interactive application into three components: 

• Customizer component 
• User interface component 
• Web Service component 

Customizer component contains all customization information for a single target 
system. At run time, the customizer object reads the customization file and stores 
all customization information in the customizer object's local storage (arrays, data 
table, etc.) to be used for customizing the client application user interfaces and 
their workflows. Customization information consists of enabled or disabled 
features and parameterized variables. 

User interface component is responsible for accepting input from users and 
allowing invocation of possible service requests. It involves the sequencing of 
web services invocation and handling of message communication based on the 
customizable workflow. It is also responsible for displaying results to users 
coming from the web service component. 

Web Service component is a collection of functional methods that are packaged as 
a single unit and published in the Internet, Intranet, or Extranet in a · private or 
public UDDI for use by other software programs, in this case the user interface 
component. 

256 



www.manaraa.com

257 

(DCAC pattern - Continue) 

Class Collaboration Class Collaboration 
Customizer Web service 
Responsibility - Customization Responsibility - User interface 

- Reads customization information file - Process a service request based on 
from the customization file I provided input 
dalabase - Returns results of processed 

requests 

Class Collaboration 
User interface 
Responsibility - Customizer 
- Calls customizer class to: - Web service 

- Enable or clsable user irterface 
componere based on selected 
features 

- Customize user interface 
- Customize workflow by setting up 

appropriate method caRs and 
calls to other user interfaces 
based on selected features 

- Invoke and pass parameters to 
appropriate web service(s) 

- Receives results from web 
service(s) 

- Display information to the user 



www.manaraa.com

(DCAC pattern - Continue) 

Dynamics 
Once the target application features are selected in the SPL customization step, the 
application will be ready for execution. The application interaction step describes 
the two processes that occur at execution time: dynamic customization and object 
interactions. 

Step 2-1: Shows how the client application is dynamically customized at run time. 
• Starts main client application program. 
• Customizer object is invoked at main client application program startup. 
• Customizer object reads customization information once from the 

customization file that is generated by the customization file generator. 
• Customization information can be read by all user interface objects 

through the customizer object. 

Provide cuslDmization info 

( Fea1lJre names, 
Features selectlon status, 
Features Variables) 

Customizatio~ 
File ~ 

~ 

Read ~ i'--- ../ 
1 Customization 

File 
I Main client If--_Inv_oke_~_,.-ll Cusmmizer 1 

application Program 1 1 1 1 11 

Feature selector & 
Customization file 

generator 

258 



www.manaraa.com

(DCAC pattern - Continue) 

Step 2-2: Shows how user interface objects interact with service requests using 
the DCAC pattern: 

Customization of user interface at run time 
• User invokes a user interface. 
• User interface requests customization information from customizer object. 
• User interface reads the customization information to: 

Customize user interface components 
Defining appropriate calls to web services based on selected 
features. 
Define appropriate calls to other user interface objects. 
Update parameterized variables. 

Customization is based on feature selection information stored in the 
customization file. 

User interface and web service interaction 
• User requests an activity by entering input data and clicking a button. 
• User interface object passes the activity request and input data to a web 

service method(s). 
• Web service processes the request and passes the results to the user 

interface object. A web service may also request services from other web 
servIces. 

• User interface object displays results received from web service. 

259 



www.manaraa.com

(DCAC pattern - Continue) 

Customization of user 
inte/face at run time 

Slar1fCreate 

User interface and _b 
service interaction 

User Input 

customization info 

customization info 

Customize user Interface an<! 
workItow, 
Update parameterized variables, 

Dispi'ly result 

Customizer 

1 • Read customization info 
1 .. * 

User interface 
1 .. • 

t j t I 
Call other UI Update 

Request Service 

Service response 

Invoke ~ 
1 .. * 

Web Service 

Process 
event 

Gall other 
_b 

services 

I' Web seonce ~ 
LJ 

Invoke other web service 

260 



www.manaraa.com

261 

8.3 Dynamic Client Application Customization with Separation 
of Concerns Pattern 

Dynamic Client Application Customization with Separation of Concerns Pattern 

Intent 
Provide a consistent reusable solution to the implementation architecture of a 
software product line using web services with provision for dynamic client 
application customization and separation concerns. 

Motivation 
This pattern is an extension to the DCAC pattern, which does not address the issue 
of separation of concerns. This issue needs to be introduced for the purpose of 
reducing complexity of developing SPL applications, maintenance, and system 
evolution. 

Solution 
The idea behind the (DCAC-SC) pattern is the development of dynamic client 
application that can be customized at system run time by separation of concert1s 
between kernel source code and optional and alternative source code. 

The DCAC-SC Pattern has four main steps: 
5. Separation of concerns between kernel and variable source code 
6. Code weaving 
7. SPL Customization (the same as the DCAC pattern) 
8. Target application interaction (the same as the DCAC pattern) 

The above steps have to be performed in sequence. First, separation of concerns 
and code weaving have to be performed. The SPL application can then be 
customized by selecting desired features. Target applications are compiled to 
produce an executable SPL application. 



www.manaraa.com

(DCAC-SC pattern - Continue) 

Step 1: Separation of concerns between kernel and variable source code: 

This step involves separating kernel source code from optional and alternative 
source code into a variable source code file where separated source code is 
grouped by features. Optional and alternative source code is identified by unique 
insertion point names in the variable source code file. Insertion points have to be 
also included in the kernel source code to specify the location where optional and 
alternative source code will be inserted. 

Dynamics 
The following scenario depicts the dynamic behavior of separation of concerns: 

• Create application classes with kernel source code. 
• Create a variable source code file that contains source code related to 

alternative and optional features. 
• Add insertion points to kernel source code where optional and alternative 

source code from the variable source code file will be inserted. 

262 



www.manaraa.com

(DCAC-SC pattern - Continue) 

Kemel Source Code Variable source code file 
Class ........ 0 $FEATURE[A] II Optional Feature 
{ 

$START insl V 
$START insl/ 

II Code 
$END insl 

V 
$START ins2 

I I Code 

$START ins2/ 

$END ins2 

$ENDFEATURE [A] 

$FEATUREINTERACTION[X,Y] 

$START ins3 

~ 
$START ins3 ~ if(Feature-X == true) II Alternative Feature 

II Code 

else if(Feature-Y == true)11 Alternative Feature 
II Code 

} . 
$END ins3 

$ENDFEATUREINTERACTION[X,Y] 

Language description: 
• Kernel source code 

$START «insertion name»: Specifies insertion location In 

kernel source code 

• Variable source code file 
$START «insertion name»: Identifies optional or alternative 
source code that needs to be inserted at the location specified in the 
kernel source code. 

$END «insertion name»: Specifies the end of insertion code. 

263 



www.manaraa.com

(DCAC-SC pattern - Continue) 

FEATURE [«feature name»]: Groups optional and alternative 
source code in a feature block. Feature blocks are integrated with 
kernel source code during the code weaving process based on 
insertion names. 

FEATUREINTERACTION[«feature 1, feature 2, . .. »]: Groups 
related features source code that requires decisions on which 
source code to execute at run time. If-then-else statement is used 
within the insertion name of the feature interaction block with 
feature identifiers in the decision statement to be integrated as-is in 
the kernel source code based on the language used to develop the 
SPL application. At run time, only one of the decisions will be 
executed based on feature selection during SPL customization. 

ENDFEATUREINTERACTION []: Specifies the end of feature 
interaction code. 

Step 2: Code weaving 
This step combines kernel source code with optional and alternative source code 
from the variable source code file. This process is based on the Code Weaver 
component, which reads the variable source code file and inserts all source code 
blocks from that file into the kernel source code at the specified insertion 
locations. 

Dynamics 
The following scenario depicts the dynamic behavior of code weaving process: 

• Run the code weaver component. 
• Read optional and alternative source code from the variable source code 

file and integrate it into kernel classes at the specified insertion point 
locations. 

• Compile integrated source code to generate an executable dynamic SPL 
application. 

264 



www.manaraa.com

Kernel source code 

Class A ClassB 

(DCAc-sc pattern - Continue) 

ClassC 

SPLclient 
application 

source code 

Compiler 

Variable source code 

I I 

Variable 
source 

code file 

Executable 
~--------------~~ code 

265 



www.manaraa.com

(DCAC-SC pattern - Continue) 

The following diagram shows the complete process of separation of concerns and 
source code integration: 

Create Kemel code in classes 

Add Insertion points where all D 

code from the feature file will be -------------------
inserted 

Create a variable source code 
file that contains code related 10 
alternative and optional features 

Read variable source code file D 

and integrate all source code 
inlo kernel classes at the 
specified insertion locations 

Compile the integrated source 
code 10 generate an executable 
dynamic SPL system 

Develop client 
application classes 

Add insertion points in 
kemel classes 

........ ~. ": ~ 
, code 

variable Create variable source 
code file ---------7 source 

code file 

Weave code 

Compile 

Run executable SPL 
application 

Kernel 
source 
code 

Integrated 
(--------- source 

code 

Executable 
code 

266 



www.manaraa.com

(DCAC-SC pattern - Continue) 

Step 3: SPL Customization 
This step is identical to the SPL customization step in the DCAC pattern. It 
involves selecting desired optional and alternative features to be included in the 
target application. The feature selector component provides a facility to make 
feature selection from a SPL model and run consistency checks to verify 
selections. Once features are selected, selection information will be stored in the 
customization file using the customization file generator. The dynamic client 
application is customized by reading the generated customization file at run time. 
This step is described in full in step 1 of the DCAC pattern. 

Step 4: Target application interaction 
This step is identical to the target application interaction step in the DCAC 
pattern. This step follows the SPL customization step. Once the target application 
features are selected, the application will be ready for execution. This step 
describes how the client application is customized dynamically at run time, and 
how user interface objects interact with service requests. This step is described in 
full in step 2 of the DCAC pattern. 

267 



www.manaraa.com

268 

8.4 Static Client Application Customization Pattern 

Static Client ApplicationCustomization Pattern 
Intent 
Provide a consistent reusable solution to th~ implementation architecture of a 
software product line using web services with provision for static customization of 
client application using the concept of separation of concerns. 

Motivation 
The goal of developing software product lines is to promote flexible software reuse. 
With the introduction of web services to SPLs, there is a need for developing a 
systematic approach that enables developers to implement a customizable overall 
system that can be customized into many single target systems using a systematic 
method for extracting the required source code for each target system. 

Solution 
The idea behind the Static Client Application Customization (SCAC) pattern is the 
separation of concerns between kernel source code and optional and alternative 
source code for the purpose of extracting only required source code for running a 
target system. 

The SCAC Pattern has four main processes: 
5. Separation of concerns between kernel and variable source code 
6. SPL Customization 
7. Code weaving 
8. Target system interaction 

The above steps have to be performed in sequence. Variable source code has to be 
separated from kernel source code in the separation of concerns step. The SPL 
customization has to be performed next to select the target application features 
before integrating variable source code with kernel source code in the code 
weaving step. The customization file generated in the SPL customization step is 
required in the integration process. Target applications are compiled to produce an 
executable target application. 



www.manaraa.com

269 

(SCAC Pattern - Continue) 

Step 1: Separation of concerns between kernel and variable source code 
This step involves separating kernel source code from optional and alternative 
source code into a variable source code file where separated source code is grouped 
by features. This step is similar to the separation of concerns step in the DCAC-SC 
pattern, but differs in the construction of the variable source code file to include 
necessary decisions when more than one feature is involved within an insertion 
point name. These decisions enable the code weaver engine to integrate only 
selected variable source code rather than integrating all variable source code as 
done in the DCAC-SC. 

Dynamics 
The following scenario depicts the dynamic behavior of Separation of concerns: 

• Create application classes with kernel source code. 
• Create a variable source code file that contains source code related to 

alternative and optional features. 
• Add necessary decisions within insertion point names for insertions that 

involve more than one feature (feature interaction). 
• Add insertion points to kernel source code where optional and alternative 

source code from the variable source code file will be inserted, based on 
feature selection. 



www.manaraa.com

270 

(SCAC Pattern - Continue) 

Kernel Source Code Variable source code File 
Class .......• O 
{ 

$FEATURE [A] II Optional Feature 

V $START insl 
I I Insertion code 

insl ~ 
$END insl 

$START 

V $START ins2 
I I Insertion code 

$END ins2 

ins2 / $ENDFEA'l'ORE [A] 

$START 
$FEATURE [X] I I Alternative Feature 

V $START ins3 

I I Insertion code 

Z 
$END ins3 

$ENDFEATURE [X] 

$START ins3 $FEATURE [Y] II Alternative Feature 

~ $START ins3 

I I Insertion code 
$END ins3 

$ENDn:ATURE[Y] 
$START ins4~ 

r-------.. 
$FEATUREINTERACTION [C, 0] 

} $START ins4 
$IF FEATURE[C,O] llBoth features selected 
II Insertion code 

$ELSEIF FEATURE[C] IIOnly feature C selected 
II Insertion code 

$ELSEIF FEATURE [0] IIOnly feature 0 selected 
II In sertion code 

$ENDIF 

$END ins4 

$ENDFEATUREINTERACTION[C,O] 



www.manaraa.com

271 

(SCAC Pattern - Continue) 

Language description: 
• Kernel source code 

$START «insertion name»: Used to specify insertion location in 
kernel source code 

• Variable source code file 
$START «insertion name»: Used to identify optional or 
alternative source code that needs to be inserted at the location 
specified in the kernel source code. 

$END «insertion name»: Specifies the end of insertion source 
code. 

FEATURE [«feature name»]: Groups optional or alternative 
source code in a feature block. Feature blocks are integrated with 
kernel source code during the code weaving step based on insertion 
names. 

FEATUREINTERACTION[«feature 1, feature 2, ... »]: Groups 
related feature source code that requires decision on which source 
code is to be included in the code weaving step. 

$IF FEATURE [«feature 1», «feature 2», . .]: A programmatic 
decision point within the FEATUREINTERACTION block that is 
used to notify the code weaver engine whether to include the 
following source code block or not based on selected features in the 
customization file. 

$ELSEIF FEATURE [«feature name»]: A programmatic ELSEIF 
point to be used in case the IF FEATURE statement is false. 

$ENDIF: Specifies the end of the decision statements. 

ENDFEATUREINTERACTION []: Specifies the end of feature 
interaction source code. 



www.manaraa.com

272 

(SCAC Pattern - Continue) 

Step 2: SPL Customizatiou 
This step is identical to the SPL customization step in the DCAC and DCAC-SC 
patterns. However, this step has to be performed before integrating variable source 
code with kernel source code in the code weaving step. It involves selecting desired 
optional and alternative features to be included in the target application. The feature 
selector component provides a facility to make feature selection from the feature 
model and run consistency checks to verify feature selections. Once features are 
selected, selection information will be stored in the customization file by the 
customization file generator. The code weaver component reads this file to 
integrate selected feature source code with kernel source code. 

Step 3: Code weaving 
This process combines kernel source code with optional and alternative source code 
from the created variable source code file and the customization file. This step is 
based on a source code integration engine, which reads the variable source code file 
code and inserts only selected source code that is related to selected features into 
the kernel source code at the specified insertion locations. This means, if an 
optional feature is selected, its related source code in the variable source code file 
will be inserted in the target system, and if one or the other alternative feature is 
selected, only related source code of the selected alternative feature is inserted in 
the target system at the location of the insertion point. Feature grouping and 
insertion points are the key for separation of concerns and source code integration. 



www.manaraa.com

273 

(SCAC Pattern - Continue) 

Dynamics 
The following scenario depicts the dynamic behavior of code weaving step: 

• Run the code weaver component. 
• Read selected optional and alternative source code from the variable source 

code file and integrate it into kernel classes at the specified insertion · point 
locations. The generated customization file is used for making decisions on 
which feature source code to insert. 

• Compile integrated source code to generate an executable target system 
with only the required target system source code. 

Kernel SOlJ"ee code 

Class A C1assB C1assC 

Target System 
Source Code 

Corr4>iler 

Variable soiree code 

I I 

Variable 
source 

code file 

CUstornzation file 

Executable 
code 



www.manaraa.com

(SCAC Pattern - Continue) 

The following diagram shows the complete processes of separation of concerns, 
feature selection, and code weaving: 

Create Kernel source code in 
classes 

Add Insertion points where 
source code from the variable 
source code file will be inserted 
based on feature selection 

Create a variable source code 
file that contains source code 
related to alternative and optional 
features 

Select target system features 
and run COnsistency checks 

Read selected features and 
integrate related source code 
from the feature file into kernel 
classes 

Compile the integrated source 
code to generate an executable 
target system 

--------------------

---- ---------------

--- - - ---------------

---_.- ---------------

Create client 
application classes 

Add insertion points in 
classes 

Create variable source 
code file 

Select features 

VVeave code 

'---------.----- ""'" 

Compile 

Run Executable target 
application 

l 

'" 

Kernel 
source 
code 

Variable 
source 

code file 

Kernel 
source 
code 

Integrated 
source 
code 

Executable 
code 

274 



www.manaraa.com

275 

(SCAC Pattern - Continue) 

Step 4: Target application interaction 
Once the interactive application is integrated and compiled, it will have the 
following components structure: 

• User interface component 
• Web service component 

User interface component is responsible for accepting input from users and 
allowing invocation of possible service requests. It involves the sequencing of web 
services invocation and handling of message communication based on the 
customized workflow. It is also responsible for displaying results to users received 
from the web service component. 

Web Service component is a collection of functional methods that are packaged as a 
single unit and published in the Internet for use by other software programs, in this 
case the user interface component. 

Class Collaboration Class Collaboration 
Web service User interface 

Responsibility - User interface Responsibility - Web service 

- Process a service request based on - Accepts user input and service 
provided input request 

- Returns results of processed - Invoke and pass parameters to 
request appropriate web service(s) 

- Receives results from web 
service(s) 

- Display information to the user 



www.manaraa.com

276 

(SCAC Pattern - Continue) 

Dynamics 
The following scenario shows how service requests are processed using SCAC: 

• User invokes a user interface 
• User requests a service by entering input data and clicking a button 
• User interface passes the service request and input data to a web service 

method(s). 
• Web service processes request and returns results to the user interface. A 

web service may also request service from other web services. 
• User interface displays results received from web service. 

User Input Request Service 

Service response 
Display result 

1-+~l-1-.. -' _____ lnv_O_ke_~-..• I! Web Service ~ 
'-----.--0-,--------- LJ 

User Interface 

can otherUI Invoke other web service 



www.manaraa.com

277 

CURRICLUM VITAE 

Mazen Saleh was born on June 13, 1968, in Makkah, Saudi Arabia. In 1990 he received 
his B.Sc. in Computer Science from Texas Southern University at Houston, Texas. He 
obtained a Master of Science in Computer Information Systems from American 
University at Washington, DC, in 2000. He joined a doctoral program at George Mason 
University in Fall 2001. 

From 1991 to 1999, Mr. Saleh worked for the Ministry of Telecommunications in Saudi 
Arabia. He started as a systems analyst and was promoted to director of the Information 
Technology department of the Radio Frequency Division in 1995. 

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

Software Product Line Engineering Based on Web Services 

A dissertation submitted in partial fulfillment of the requirements for the Degree of 
Doctoral of Philosophy at George Mason University. 

By 

Mazen M. Aquil Saleh 

Bachelor of Science, Texas Southern University, 1990 
Master of Science, American University, 2000 

Director: Dr. Hassan Gomaa 
Professor, Information and Software Systems Engineering 

Spring Semester 2005 
George Masoh University 

Fairfax, Virginia 

Software Product Line Engineering Based on Web Servicesالعنوان:

Saleh, Mazen M. Aquilالمؤلف الرئيسي:

Gomaa, Hassan(Super.)مؤلفين آخرين:

2005التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

:MD 618453رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

البرمجيات، الإنترنت، تقنية المعلومات، هندسة الحاسباتمواضيع:

https://search.mandumah.com/Record/618453رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618453


www.manaraa.com

Software Product Line Engineering Based on Web Services 

A dissertation submitted in partial fulfillment of the requirements for the Degree of 
Doctoral of Philosophy at George Mason University. 

By 

Mazen M. Aquil Saleh 

Bachelor of Science, Texas Southern University, 1990 
Master of Science, American University, 2000 

Director: Dr. Hassan Gomaa 
Professor, Information and Software Systems Engineering 

Spring Semester 2005 
George Masoh University 

Fairfax, Virginia 

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

