‘e o* inghiall)l

4 DARALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Software Product Line Engineering Based on Web Services 1Ulgusll
Saleh, Mazen M. Aquil W RUI YN

Gomaa, Hassan(Super.) to> aslio

2005 HENVWN PR

bia>)9 uS19,49 ‘8990

618453 :MD »3,

duzol> Jilw, JESYEINIFTY

English :aelll

ol 958> allw, ragodell as)all

George Mason University asol=l

Volgenau School of Engineering raudsUl

a,S5,0V daxiodl WLVl radgall

Dissertations 1Wlogleoll aclgd

Olowll awiis (wlogleoll audi oYl «Oliseo)l :aolgo
https://search.mandumah.com/Record/618453 ol

abbgaze gzl gro> anshaiall ls 2019 ©

plaziwlW 8kl 0is aclb ol Jrozs cliSoy .albbgazo puiull Bod> gaox ol lode ouiall égb(vlz.ai g0 gdgall BVl (sle sy a>lio 83loJl 0ia
s of il B> wlsol oo wdas 2upai Wes (g SVl 3wl ol oVl g3lge Jio) lws Sl ue il ol Jigmdl ol guwidl gioug dnid swazeadl

ol Lalu Zyl_ﬂbl

aoglaioll

www.maharaa.com

https://search.mandumah.com/Record/618453

1. INTRODUCTION

1.1 Background

The field of software reuse has evolved from reuse of individual components towards
large-scale reuse with software product lines [Clements02]. A software product line
(SPL) consists of a family of software systems that have some common functionality and
some variable functionality. Parnas referred to a collection of systems that share common
characteristics as a family of systems [Parnas79]. According to Parmnas, it is worth
considering the development of a family of systems when there is more to be gained by
analyzing the systems collectively rather than separately, i.e. the systems have more
features in common than features that distinguish them. A family of systems is now

referred to as a software product line or software product family.

A Software Product Line (SPL) is developed by engineering a reusable architecture for
the product line, which can be configured to generate target applications [Gomaa99,
Gomaa04]. The two major activities used in developing product lines are SPL
engineering and application engineering. SPL engineering involves the analysis, design,
and implementation of product line software that satisfy the requirements of the families

of systems [Weiss99, Gomaa04)]. Application engineering involves tailoring the

cengineered SPL to produce target applications based on a given set of configuration

requirements [Sugumaran92, Gomaa04].

This dissertation addresses product lines based on web services. A web service is defined
as a collection of functional methods that are grouped into a single package and published
in the Internet for use by other applications. Web services use the standard Extensible
Markup Language (XML) to exchange information with other software via the Internet

protocols [Deitel et al. 2003, Howard04, Booth04].

Although there is much research into software product line engineering, this research
extends product line concepts to address the engineering and customization of product

lines that are based on web services.

1.2 Research Problem and Approach

This research focuses on designing, developing and customizing software product lines
based on web services to derive executable target applications from the product line using
an automated customization environment. The approach taken is to:
a) Develop a design approach for software product line service-oriented architecture.
b) Introduce three different development approaches to support the automatic
customization of SPL architecture and components:

c) Develop a proof-of-concept prototype to support this research

d) Validate this research with two web services-based software product line case

studies.

1.3 Importance and Rationale of This Research

The idea of web services has been strongly promoted in industry by companies such as
Microsoft, IBM, Oracle, and Hewlett-Packard. They see this new technology as a broad
new vision for how software systems are analyzed, developed, and used [McDougall 01].
Web services employ open standards that are text-based, which introduce a new approach
to communication between heterogeneous platforms and applications [Deitel 03]. Using
the already existing internet technology, web services make communication,
interoperability, and integration cheaper and easier to achieve, compared to current
methods, such as CORBA and DCOM [Deitel 03]. As the use of web services continues
to grow, software product lines engineers should take full advantage of this technology.
Therefore, it is essential to develop a new methodology that enables the design,
development, and customization of software product lines that consist of web services-

based components.

1.4 Terminology

This section provides definitions of important terms used in this dissertation.

Unified Modeling Language
Unified Modeling Language (UML) is a standardized object-oriented development

environment that is used to analyze and design systems.

Software Product Line

A software product line (SPL) is a family of systems that share common features. It is
developed by engineering an application domain that can be configured to generate target
systems through the customization process of selecting optional and alternative features.
[Parnas79, Gomaa04]

Feature

A feature is a functional requirement of a software application.

SPL Engineer

The SPL engineer is responsible for designing and developing the product line.
Application Engineer

The application engineer is responsible for customizing the product line to derive target
applications.

Kernel Source Code

Kernel source code refers to source code that exists in all derived target applications.
Variable Source Code

Variable source code refers to optional or alternative source code blocks that are
integrated with kernel source code based on feature selection to produce a customized
target application.

Separation of Concerns

Separation of concerns refers to the separation of common and variable product line
concerns. It involves the separation of variable source code from kernel source code into

a variable source code file.

Code Weaving

Code weaving is the integration of kernel source code with optional and alternative
source code

Client application

Client application refers to the client subsystem and the software objects it contains.
Server application

Server application refers to the server subsystem and its constituent web service

components and database.

1.5 Organization

The rest of the dissertation is organized as follows. Chapter 2 contains an overview of
related work. Chapter 3 addresses the problem statement and research approach,
including comparison of related work with this research effort. Chapter 4 describes the
proposed design approach using a Hotel System case study. Chapter 5 describes the three
development approaches and their customization environment. Chapter 6 describes the
proof-of-concept prototype that is used to support this research. Chapter 7 includes
contributions and future research. References and appendices are attached at the end,

including the second case study of Radio Frequency Management System.

http://www.tcpdf.org

‘e o* inghiall)l

4 DARALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Software Product Line Engineering Based on Web Services 1Ulgusll
Saleh, Mazen M. Aquil rosan)| alioll

Gomaa, Hassan(Super.) HUVTCY BVEL-9Y

2005 HENVWN PR

bia>)9 uS19,49 ‘8990

618453 :MD »3,

duzol> Jilw, ESYEINIFTY

English :aelll

ol,9:8> allw, ragodell as)all

George Mason University asol=l

Volgenau School of Engineering raudsUl

a,S5,0V daxiodl WLVl radgall

Dissertations 1Wlogleall aclgd

Olowll awiis (wlogleoll audi oYl «Oliseo)l :&aolgo
https://search.mandumah.com/Record/618453 ol

‘ ‘ abgaxo Jgaxl gao> .Aoghaioll ,l> 2019 ©
Pl sloll 030 aclb ol Jwos cliSey abgazo il Sgi> gaox Ol lale il Boi> wlxol go g3sall SYl sle <l aslio bsloll 0in
s ol sl Bgi> Lol o wsbas aurai Ugs (g SV 2yl of iVl g3lgo Jto) aliwg oSl ac uinill of Jigmill ol il gaoug st ol

ol Lalu Zyl_ﬂbl

aoglaioll

www.manharaa.com

https://search.mandumah.com/Record/618453

2. RELATED WORK

2.1 Introduction

This chapter surveys other research efforts that are related to the research described in
this dissertation. This chapter begins by defining software product lines in section 2.2.
Section 2.3 describes the Evolutionary Software Product Line Engineering Process
(PLUS). Section 2.4 describes the multiple-view model of software product lines used in
the PLUS environment. Section 2.5 addresses other software product line engineering
methods. 2.6 describes component-based software engineering. Web services are
described in section 2.7. Section 2.8 describes Aspect-Oriented Programming, and

section 2.9 describes frame technology.

2.2 Software Product Lines

A software product line is a family of systems that share common features [Gomaa92,
Gomaa04]. It is developed by engineering a Software Product Line (SPL) that can be
tailored to generate target systems [Gomaa99, Farrukh98, Weiss99]. Software product
line engineering involves the analysis, design, and implementation of a product line that
satisfies the requirements of all target applications [Sugumaran92, Gomaa04]. This can
be achieved by capturing the commonality and variability of a family of system at the

analysis phase, and applying this information at the design and implementation phases

[Gomaa 99]. “The goal of software product families is to improve productivity through

software reuse. A new application system can be configured from the domain model

given the common features (requirement) of the domain and variable features that reflect

differences among the members of the product family” [Farrukh 1998].

2.3 Evolutionary Software Product Line Engineering Process

The Evolutionary Software Product Line Engineering Process (PLUS) [Gomaa04]

consists of two main processes, as shown in Figure 2-1:

a)

b)

Software Product line Engineering. A product line multiple-view model, which
addresses the multiple views of a software product line, is developed. The product
line multiple-view model, product line architecture, and reusable components are
developed and stored in the product line reuse library.

Application engineering. Involves the configuration of target applications from the
SPL architecture and implementation. A target application is a member of the
software product line. The multiple-view model for a target application is configured
from the product line multiple-view model. The user selects the desired features for
the product line member (referred to as target application). Given the target
application features, the product line model and architecture are adapted and tailored
to derive the target application model and architecture. The architecture determines
which of the reusable components are needed for configuring the executable target

application.

Earlier papers have described how this approach was carried out before [Gomaa%6,
Gomaa99] and after the introduction of the UML [Gomaa02, Gomaa04]. This research
describes how product line engineering can be carried out for product lines that are based

on Web Services.

Product Line Multiple-View Model,
Product Line Product Line Architecture,
Requirements Prodsct Lises Reusable Components
—] 5 .
.| Engineering
Product Line
Reuse
Library
Target System
Requirements Target System
Application |——m
T~

Unsatisfied Requirements, Errors, Adaptations

Figure 2-1 Evolutionary Software Product Line Engineering Process

2.4 Multiple-View Models of Software Product Lines

A multiple-view model for a software product line defines the different characteristics of
a software family [Parnas79], including the commonality and variability among the
members of the family [Clements02, Weiss99]. A multiple-view model is represented

using the UML notation [Rumbaugh99, Gomaa0Oa, Gomaa04] and considers the product

line from different perspectives. The PLUS environment [Gomaa04] is based on the

multiple-view mode for software product lines, as described in the following sections.

2.4.1 Use Case Model for Software Product Lines

The functional requirements of a system are defined in terms of use cases and actors
[Jacobson97]. An actor is a user type. A use case describes the sequence of interactions
between the actor and the system, considered as a black box.

For a single system, all use cases are required. When modeling a software product line,
kernel use cases are those use cases required by all members of the family. Optional use
cases are those use cases required by some but not all members of the family. Some use
cases may be alternative, that is different versions of the use case are required by

different members of the family [Gomaa04].

2.4.2. Feature Analysis for Software Product Lines

Feature analysis is an important aspect of domain analysis [Cohen98, Gomaa04, Griss98,
Kang90]. In domain analysis, features are analyzed and categorized as kernel features
(must be supported in all target systems), optional features (only required in some target
systems), and prerequisite features (dependent upon other features). There may also be
dependencies among features, such as mutually exclusive features. The emphasis in
feature analysis is on the optional and alternative features, since they differentiate one
member of the family from the others. In modeling software product lines, features may

be functional features (addressing software functional requirements), non-functional

10

features (e.g., relating to security or performance), or parametric features (e.g., parameter

whose value can be set differently in different members of the product line).

In the object-oriented analysis of single systems, use cases are used to determine the
functional features of a system. They can also serve this purpose in product families.
Griss [Griss98] has pointed out that the goal of the use case analysis is to get a good
understanding of the functional requirements whereas the goal of feature analysis is to
enable reuse. Use cases and features may be used to complement each other. In

particular, use cases can be mapped to features based on their reuse properties.

Functional requirements that are required by all members of the family are packaged into
a kernel feature. From a use case perspective, this means that the kernel use cases, which
are required by all members of the family, constitute the kernel feature. Optional use

cases, which are always used together, may also be packaged into an optional feature.

2.4.3 Static Model for Software Product Lines

A static model for a product line has kernel classes, which are used by all members of the
product family, and optional classes that are used by some but not all members of the
family. Variants of a class, which are used by different members of the product family,
can be modeled using a generalization / specialization hierarchy. UML stereotypes are
used to allow new modeling elements, tailored to the modeler’s problem, which are based

on existing modeling elements [Booch99, Rumbaugh99]. Thus, the stereotypes

11

<<kernel>>, <<optional>>, and <<variant>> are used to distinguish between kernel,

optional, and variant classes [Gomaa04].

2.4.4 Collaboration Model for Software Product Lines

The collaboration model is used to depict the objects that participate in each use case, and
the sequence of messages passed between them [Rumbaugh99, Gomaa00]. In product
families, the collaboration model is developed for each use case, kernel or optional.
Once the use cases have been determined and categorized as kernel, optional, or variant,

the collaboration diagrams can be developed [Gomaa04].

For each feature, the objects that are needed to support the feature are determined and
depicted on a feature based collaboration diagram. With this UML based approach, the
objects are determined from the use cases. It should be noted that on the feature based
collaboration diagram, the message sequence numbering, which is shown on individual

use case based collaborations, is usually not shown.

This view is very important as it is used to determine how the objects interact with each
other to support a given use case. The interconnected objects in a collaboration diagram
supporting one use case depend on (and hence communicate with) objects supporting a

prerequisite use case.

12

2.5 Other Software Product Line Engineering Methods

There are several domain engineering methods that are used to develop family of
systems, such as FODA [Kang90, Cohen98], RSEB [Jacobson92, Jacobson97], FAST
[Weiss99], and KobrA [Atkinson00]. The above product line engineering methods are

described in the following sections.

2.5.1 Feature-Oriented Domain Analysis (FODA)

Feature-Oriented Domain Analysis (FODA) is a domain analysis method that is used to
define a family of systems [Kang90, Cohen98]. It consists of:

a) Context analysis: Analyzes the scope of a domain. In this phase, a context model
for the product line is developed using context diagrams. In this analysis,
relationships between the product line and external elements are analyzed, and the
variability is identified.

b) Domain modeling: Identifies commonalities and differences in a family of
systems. Multiple models are developed to represent the specified product line.
The feature model is the heart of the FODA method. It represents the relationships
among the features as a hierarchical tree. Some other models used here are entity-
relationship models and functional models.

c) Architecture modeling: Models a generic software architecture for a family of
systems using the product line models. It defines the process for allocating the

features, functions, and data objects defined in the product line models [Kang90].

13

2.5.2 Reuse-driven Software Engineering Method (RSEB)

Reuse-driven Software Engineering Method (RSEB) is a use case object-oriented method
that is used to develop a family of related systems, where variability is modeled in the use
cases using variation points that use the “extend” and “include” relations. Variability in

use cases is introduced at these variation points [Jacobson92, Jacobson97].

The RSEB method includes several engineering processes:
a) Object-Oriented business engineering: Captures business processes based on
object-oriented use cases
b) Map Business processes to information systems: This engineering process
requires an analysis of the overall business, which include 3 sub-processes:
¢ Application family engineering, which involves the development of a domain
model and a domain architecture
e Component system engineering, which involves the development of
components based on the domain model and architecture
e Application system engineering, which involves the development of new
application systems using application family architecture and components

[Jacabson92, Jacabson97]

2.5.3 FAST

Weiss and Lai have proposed the FAST method [Weiss99, Coplen98], which

“incorporate abstraction and parameterization techniques into a configuration language

14

for modeling each family member. The configuration of each family member is mapped
to templates through a source code generator” [Shin02] that is used to produce executable
source code. Templates represent the variations of the family members. Variations are
identified by parameter values, which are used in the configuration language when
generating source code. The FAST method is used in a domain that is fully described

with parameters and templates [Weiss99, Shin 2002].

2.5.4 KobrA

The KobrA method [Atkinson00] is a component-based product line development
method containing two major processes:

a) Framework engineering: The process of developing a framework that is used as a
reusable infrastructure for developing target systems within an application
domain. This process consists of three sub processes, which are:

e Context Realization: Determines the scope of the framework
e Component specification: Defines requirements
e Component realization: Designs software architecture
b) Application engineering: involves the development of target systems based on the

developed framework [Atkinson00].

2.5.5 Knowledge-Based Requirement Elicitation Tool (KBRET)

The Knowledge-Based Requirement Elicitation Tool (KBRET) was developed by George

Mason University for the purpose of automating the process of generating target system

15

specifications from a domain model [Gomaa92, Gomaa96a]. The major components of
KBRET are:

a) The domain-dependent knowledge base: Derived from the object repository
through a management user interface. It contains domain-specific information
about a particular application [Gomaa96a].

b) The domain-independent knowledge base: “Contains the procedural and control
knowledge required to generate target system specification from a domain model”
[Gomaa%6a].

c) The user interface manager: used to extract target system specifications based on

user selection to desired features.

2.5.6 Web-Based Software Product Lines

This research was performed by Mark Gianturco [Gianturco04] to describe a new method
for modeling web-based software product lines and generating target applications from
them. In his research, several web-based patterns were developed to support variability
in web page design and implementation. The patterns described in this research are:

e WebDesign design pattern: Describes a consistent look and feel for all web pages,
by creating an object that adds all the view functionality, allowing each web page
to contain the additional unique functionality.

e WebFeedback design pattern: Defines a set of objects that are used always to
build a form submission page. These objects provide variable information to the

submission page using stored data in the reusable entity objects.

16

e WebText design pattern: Defines a set of objects that are always used to build a
text display page. These objects provide variable information to text pages using
stored data in the reusable entity objects.

e WebLinks design pattern: Defines a set of objects that are always used to build a
links page. These objects provide variable information to links page using stored

data in the reusable entity objects.

The above patterns were used to customize target applications by changing the contents

of the reusable entity objects to satisfy the requirement of a target application.

2.6 Component-Based Software Engineering

Component-based software engineering is concerned with the assembly of software
systems from prebuilt software components where components and frameworks have to
satisfy certain specifications and middleware [Bachman00]. A software component can
be viewed as an architectural abstraction or as an implementation. Implementation
components can be assembled and deployed into a larger system. Architectural
components [Shaw96], on the other hand, express design rules in the form of a
component model that imposes a set of standards to which components must conform

[Kirtland99, Bachmann00].

17

types & contract

7. Component Framework

Figure 2-2 Component-Based Design Pattern [Bachmann00]

Figure 2.2 depicts an overall approach for assembling a system from prebuilt

components:

1. A component - which is a software implementation of functionality;

2. Component type- specific interfaces;

3. A contract that must be met to satisfy certain tasks;

4. Independently developed components that conform to certain rules in order to
interact with other components;

5. Distinct component types and contract to allow components to be assembled in
a component framework;

6. A component model, which is a set of component types, interfaces, and
contracts;

7. A component framework provides different runtime services to allow for

component interaction;

18

8. Coordination services, which are runtime services that are provided by the

component framework [Bachmann00, Bass00].

Component-based software applications use standards such as OMG’s Object Request
Broker Architecture (CORBA), Microsoft’s Distributed Component Object Model
(DCOM), Sun microsystem’s Remote Method Invocation (RMI), and IBM’s Distributed
System Object Model (DCOM) to enable communication between distributed

components and to integrate different applications together [Chung03, Deitel03].

The ideas behind component-based software engineering provide great benefits to
software developers, such as software reuse, improved programmer productivity, and
reduce time to market. Unfortunately, this engineering software architecture has many
drawbacks, which led to the new invention of “web services”, discussed in the next

section. Some of these drawbacks are [Bass00, Deitel03]:

e Lack of mechanism to make components interoperable: among the different
standards mentioned above, interoperability is limited between them. For
example, DCOM and CORBA components usually communicate via a
COM/CORBA bridge. If either DCOM’s or CORBA’s underlying protocols
change, programmers have to go through serious modifications to reflect the
change.

e Each organization is using its own standards: Each organization is developing

their own components based on a preferred standard to provide communication

19

between their developed components. As mentioned earlier, there are many
standards or technologies that provide different solutions to component-based

software applications.

e Platform dependent [Bass00, Deitel03].

2.7 Web Services

Web services are loosely coupled software components that use XML to exchange
information with other applications over the Internet, Intranet, or Extranet [Govatos02,
Deitel03, Booth04]. “The primary objective of web services is to simplify and
standardize application interoperability within and across companies, leading to increased

operational efficiencies and tighter partner relationships“ [Govatos02].

A web service architecture consists of three primary functions [Deitel03, Howard04,

Booth04]:

e Discovery: Web services are discovered through Universal Description,
Discovery and Integration (UDDI). It is “a speci!ﬁcation that defines registries
in which businesses can publish information about themselves and the
services they provide” [Deitel03].

e Description: Web services are described by Web Services Description
Language (WSDL). It is a language that meant to be read by software
applications. A WSDL document defines the messages types that a web

service may send or receive. It also specifies the data that a requesting

20

application must provide in order for this web service to perform a specific
task.
Transport: Web services are transported using Simple Object Access Protocol

(SOAP) [Deitel03, Howard04, Booth04].

2.7.1 Advantages of Web Services

Web services technology has solved many problems of its predecessors. Some of its

advantages are [Deitel03]:

Employ open standards using open, text-based, standards. XML is the main
standard used for communication between web services and other web services
or software applications.

Platform independent.

Web services are less expensive and easier to implement compared to some of
the leading technologies, such as DCOM and CORBA. Web services use the
available Internet protocol for their communication. Therefore, exper;sive
private networks could be avoided. Also, since web services communicate
directly without the need for a broker or any middleware, development is much
simpler.

Promote a modular approach to programming.

Can be implemented incrementally [Deitel03].

21

2.7.2 Disadvantages of Web Services

Even though web services provide many benefits, they also create some challenges for
application developers, such as [Deitel03]:

e Lack of standard security procedures. Web services allow direct access to a
company’s information resources and applications, which can expose the network
to hackers and viruses. The SOAP standard protocol used in the communication
process with web services does not provide security protection.

e Quality of service is one of the major challenges of web services. Response time,
handling large number of requests, and infrequent update of information are some
of the issues related to quality of service that consumers have to consider before

using a web service.

2.7.3 Service-oriented Architecture

Service-Oriented Architecture (SOA) is an architectural style based on web services
whose goal is to achieve loose coupling among interacting software components. A
service is a functional process composed by a service provider to achieve desired end
results for a service consumer [He03, Howard04]. Figure 2-3 shows a conceptual view of
the service-oriented architecture. It consists of: client application, services interface,
business objects, and data storage. A SOA “adds a services interface on top of the
business objects or the legacy system that is aligned to the business processes of the

organization, rather than to entities within the applications” [Bisson04]. The orchestration

22

layer is responsible for orchestrating calls to the business objects and managing responses

with the calling client application [Bisson04, Irek03].

Figure 2-3 Service-Oriented Architecture [Irek03]

2.8 Aspect-Oriented Programming

Aspect-oriented programming (AOP) is a new technology for enabling the
modularization of crosscutting concerns into single units called aspects, which can then
be integrated with the rest of the system at join points [Bodkin02, Lee02]. An aspect file
contains modular units of crosscutting implementation. Crosscutting concerns refers to
the encapsulation of behaviors that affect multiple classes into reusable modules. Join
points refer to locations where application classes are affected by one or more

crosscutting concerns [Bodkin02, Lee02, Lesiecki02].

23

Class A Class B ClassC

Executable

Application » Compiler > code

Figure 2-4 Aspect-Oriented Programming Architecture [Anastasopoulos01]

Figure 4-2 shows a conceptual overview of the weaving process between application
classes and an aspect file to generate an integrated application that includes all pre-built
modules of crosscutting concerns. Application classes and the aspect file are combined
automatically using an integration engine, namely Code Weaver, and compiled to
produce an executable source code. Aspect] [Lee02, Bodkin02] is one of the most
popular tools developed specifically for AOP. It is based on JAVA language. It serves as

the main engine for integrating crosscutting concerns using an aspect file.

The purpose of using AOP technology is to reduce or eliminate source code redundancy.
For example, logging a method to a file for debugging, running a security check, or
opening a database connection. Many classes of the application may need to use some of

these methods repeatedly in different locations. Separation of concerns and source code

24

weaving help developers to implement these methods separately from the application,

and then use the code weaver to insert them automatically at specified join points.

There are some research efforts that apply AOP in the development of software product
lines [Leasint04, Loughran04a, Anastasopoulos04]. The idea of separation of concerns
is used to separate optional and alternative source code from kernel source code using an
aspect file. The SPL application is customized by tailoring the aspect file to include only
needed optional and alternative source code. The aspect file is used along with the source
code weaver to integrate variable source code with kernel source code to generate a target

application.

2.9 Frame Technology

Frame technology (FT) is based on forming hierarchical reuse assemblies of framed
source code [Basset97, Jarzabek03, Anastasopoulos01, Holmes03]. Source files
are broken down into several hierarchical files, namely frames. The frame language
composes these frames using parameterized variables and “adapt” commands. “Frames
are source files equipped with preprocessor-like directives which allow parents
(overlying frames) to copy and adapt children (underlying frames)”
[Anastasopoulos01]. At the top level of the frame hierarchy lays a specification frame,
which is used to specify children frames to be copied into parent frames at pre-defined

locations.

<?xmi version="1 0"2>

v.x frame name="A">
AAA before
£ adapt wframe="8" /»

¢ =adapt xframe="C" 7>,

<IDOCTYPE xfiame SYSTEM "fle:Mcbard 104 beh\dtdwwl 1. 0.t

“file /e vosdl10_ betadtdoorel_1_0.did™>

AAA afler
/ <heframes ' =

<Pl version 10775 T <l version=10"2>
<IDOCTYPE x-frame SYSTEM <IDOCTYPE x-frame SYSTEM
“ﬂe.ﬂmd 10 behiﬂm 1.0.did"»

<eframe names= "B"> dx-frame names= “C*>

-BBB before CCC befom
d.uﬂx-ﬁanw-"!)"h

CCC atter

- Puml Ve sion="1 075
KIDOCTYPE xframe SYSTEM
Ifile:ifcvond_10 b&‘hmcwl 1.0, did">
ko frame name = "D"»

DDD
<heframes

Gdaphe-ﬁnmef Bl
BBB ater
/1 ﬂk-mme? \\ o <feframe

daptssframe="E" />
/::cc

‘adapbeflame-ﬁ’ i

AN

‘<IDOCTYPE xframe SYSTEM

25

<xmi vetsion="1.0"7>

“file:icoord_10 heh’\d-ldwcl 1 D.did"
<%-frame name= "E">
EEE

i mﬁo%

<IDOCTYPE »-frame SYSTEM
“file:ffosvd 10 _betaididoorcl4_0.did™
Qeframe name="F"»

FFF.
Lfe-frame>

<heframes

Figure 2-5 Example of an x-frame hierarchy [Zhang03b]

Figure 2-5 shows an example of an x-frame hierarchy taken from the XVCL web site

[Zhang03b]. The example shows different levels of frames that are copied from children

frames to parent frames using the adapt command at pre-defined locations to generate

one application class file.

Some research efforts have applied Frame technology to the development of software

product lines [Loughran04b, Greenwood04]. The idea of frames and SPL is used to

separate optional and alternative source code from kernel source code using frames. The

SPL application is customized by tailoring the top level frame (spec) to specify needed

frames to be used in the composition process to generate a target application.

26

2.10 Summary

This chapter described related work for this research effort, which consists of different
methods and environments for Software Product Line engineering. It addressed the PLUS
environment in more detail than the other related work because of its close relevance to
this research effort. The other methods described are: FODA, RSEB, FAST, and KobrA.
This chapter also described some related technologies that are used to derive target
applications from a software product line, such as aspect-oriented programming and
frame technology. This research effort builds on these technologies to formulate the ideas

behind the automatic customization of product lines.

http://www.tcpdf.org

‘e o* inghiall)l

4 DARALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Software Product Line Engineering Based on Web Services 1Ulgusll
Saleh, Mazen M. Aquil rosan)| alioll

Gomaa, Hassan(Super.) HUVTCY BVEL-9Y

2005 HENVWN PR

bia>)9 uS19,49 ‘8990

618453 :MD »3,

duzol> Jilw, ESYEINIFTY

English :aelll

ol,9:8> allw, ragodell as)all

George Mason University asol=l

Volgenau School of Engineering raudsUl

a,S5,0V daxiodl WLVl radgall

Dissertations 1Wlogleall aclgd

Olowll awiis (wlogleoll audi oYl «Oliseo)l :&aolgo
https://search.mandumah.com/Record/618453 ol

‘ ‘ abgaxo Jgaxl gao> .Aoghaioll ,l> 2019 ©
Pl sloll 030 aclb ol Jwos cliSey abgazo il Sgi> gaox Ol lale il Boi> wlxol go g3sall SYl sle <l aslio bsloll 0in
s ol sl Bgi> Lol o wsbas aurai Ugs (g SV 2yl of iVl g3lgo Jto) aliwg oSl ac uinill of Jigmill ol il gaoug st ol

ol Lalu Zyl_ﬂbl

aoglaioll

www.manharaa.com

https://search.mandumah.com/Record/618453

Zi

3. PROBLEM STATEMENT AND RESEARCH APPROACH

3.1 Introduction

The purpose of this research is to investigate an approach for designing, developing, and
customizing a Software Product Line for Service-Oriented Architectures (SPL-SOA).
This approach builds on previous research efforts on service-oriented architectures for
single systems, web services development, component-based applications, and software
product lines. It also builds on two development approaches: framing technology and

aspect-oriented programming, described in the literature review of Chapter 2.

The design approach is based on a multiple-view model for Software Product Lines
(SPL). It addresses the engineering of an overall web service-oriented customizable
software product line system where all processing activities are separated from the client

application and grouped into accessible web services over the Internet.

This research also describes three different product line customization approaches for
SPL-SOA architecture and implementation. The three customization approaches follow
the same design architecture, but differ in the product line development and
customization process, with specific consideration given to each of the customization

methods described in this research.

28

Software product line customization is one of the major obstacles that faces SPL
application engineers starting from a product line architecture and implementation. In this
research, different customization methods will be described and supported by a product
line independent customization prototype to help developers and application engineers
configure a SPL application and generate target systems automatically from the reusable

service-oriented product line architecture and components.

3.2 Problem Statement

Current approaches do not address the design, implementation, and automatic
customization of software product lines based on web services. It is necessary to extend
the current approaches for modeling single web services-based systems to address the
unique issues of software product lines. It is also necessary to introduce an automated
software development environment, based on separation of common and variable product
line concerns, to allow developers to design, implement, and automatically customize

web services-based software product lines to derive executable target applications.

3.3 Research Approach

This research will be based on the Evolutionary Domain Life Cycle (EDLC) and Product
Line UML-based Software Engineering environment (PLUS) [Gomaa00,Gomaa04],
described in Chapter 2, for developing the new concepts.
This research covers the two major phases of the EDLC:

e Software Product line Engineering phase, which includes:

29

- The development of a multiple-view model for web services-based
software product lines.
- The development of a SPL service-oriented architecture.
- The development of reusable components
e Application Engineering. This phase covers the customization of the software

product line to generate executable target systems.

The PLUS method uses the UML notation to model product line software. This research
uses the PLUS method in the development of the multiple-view model for web services-

based software product lines.

The following list summarizes the research activities that will be performed:
a) Develop a design approach for software product line service-oriented architecture.
b) Design three software development environments to support the automatic
customization of SPL architecture and components:
e Development of Dynamic Client Application Customization (DCAC).
® De\r;elopment of Dynamic Client Application Customization with
separation of concerns (DCAC-SC).
e Development of Static Client Application Customization with separation
of concerns (SCAC).
¢) Develop a proof-of-concept prototype to support the above three development

environments.

30

d) Apply the web services-based software product line to two case studies to validate

this research.

The following sections describe these research activities in more detail.

3.4 Design method for software product line service-oriented
architecture

The design approach is based on a multiple-view model for Software Product Lines. The
multiple-view model defines the different characteristics of a software family [Parnas79],
including the commonality and variability among the members of the family
[Clements02, Weiss99]. A multiple-view model is represented using the Product Line
UML-based Software Engineering environment (PLUS) [Gomaa00, Gomaa04], which is

extended in this research to include the design of product lines based on web services.

The design approach is illustrated by means of a case study of a hotel software product
line. In this case study, a hotel product line is created for a hotel chain, which can be

automatically customized to serve the needs of individual hotels.

This activity will cover the following multiple-view models:
e Use case modeling
e Feature modeling
e User interface navigation modeling

e Interaction modeling

31

e Activity modeling
e Software architecture modeling
e Entity class modeling

e Component interface modeling

From the above multiple-view models, certain models are addressed differently in this
research to cover the unique issues related to the design of Software Product Line Web
Service-Oriented Architecture (SPL-SOA): user interface navigation modeling,
interaction modeling, activity modeling, software architecture modeling, and components
interfaces modeling. The other models are used to complete the case study. The use case
model is used to describe the functional requirements of SPL. The feature model is used
to depict the kernel, optional, and alternative features in the SPL. The entity class model

is used to depict the needed input when developing web services.

3.5 Development environments

This section describes software development environments to support the design and
customization of Software Product Line Web Service-Oriented Architecture, in which
service functionality is separated from the client side of the application and grouped into
accessible web services over the Internet. The three development approaches are based
on a client/server design pattern. Client applications contain only user interfaces and
customizable workflows that are responsible for orchestrating web services invocation

and user interface objects calls. The client application is treated as white box reuse. The

32

architecture and implementation are customized according to one of the three

customization approaches. The server application contains all web services and database

support. Web services are treated as black box reuse of services. They are either used or

not used based on the customization of the client application. The three development

approaches will follow the same design approach described in section 3.4. However, they

will differ in how separation of concerns is used for software development and

customization. The three approaches are:

1.

Development of dynamic customization of client application (DCAC): Dynamic
customization is defined in this research as customization of application objects at
system run time. Objects are customized using a customization file that contains

the target system selected features and values of parameterized variables.

Development of dynamic customization of client application with separation of
concerns: The second development approach is an extension to the first method
(DCAC) to include the separation of concerns. It is based on the dynamic
customization of client applications, where objects are customized at system run
time using a customization file. However, this method includes the separation of
concerns, where optional and alternative source code is separated from kernel
source code and placed in a variable source code file. During source code
integration (referred to as code weaving), the variable source code file is used to
integrate kernel source code with optional and alternative source code. The result

of the integration process is a combined set of source code for the entire software

3.

33

product line, including all optional and alternative source code. The source code
for the integrated SPL system is identical to that produced by the first method

(DCAC).

Separation of concerns is used to reduce complexity of developing software
product lines and improve system maintenance by separating variable source code
from kernel source code. Variable source code can be manipulated separately
within the SPL environment and then automatically integrated with kernel source

code.

Development of static customization of client application with separation of
concerns: Static customization is defined in this research as customization of
application classes at system derivation time. Classes are customized by
integrating kernel source code with only the selected optional and alternative
source code from the variable source code file. In this approach, there is no
customization at system run time. The integration process is based on feature
selection and an integration method that is included in the proof-of-concept
prototype provided with this research. This approach is suitable for memory
constrained SPL applications that require distribution of only needed target

application source code.

34

3.6 Proof-of-concept development environment

A proof-of-concept Software Product Line Environment Prototype (SPLET) is developed
to support this research. It includes the following components:
e SPL feature editor:
- Allows SPL engineers to create a feature dependency tree and define
feature relations.
- Allows SPL engineers to create parameterized 'variables for each
parameterized feature.
- Allows SPL engineers to define mappings between features and related
web service components.
- Allows SPL engineers to define mappings between features and related
artifacts, such as specifications, designs, and test procedures.
e Web service editor:
- Allows SPL engineers to enter web service components and link them to
their location on the Internet. The entered web service list is used by the
SPL engineers to map web services to features using the feature editor
component.
e Feature selector:
- Allows application engineers to select desired features

- Allows application engineers to enter values for parameterized variables

35

Consistency checker: This component is part of the feature editor. It serves as a
checker for selecting features. When a feature is selected, the consistency checker
is invoked to verify selection.

Customization file generator: This component is responsible for automatically
generating a customization file that is required for the dynamic customization of
client applications at system run time. It is based on the feature selector
component. It sets feature selection status to true/false and stores values of
parameterized variables.

Variable source code editor: Creates a variable source code file that stores related
optional and alternative source code for each feature to be used in the integration
process.

Code tracker: This component is used to locate optional and alternative source
code in the variable source code file and kernel source code.

Code weaver: This component is used for the integration process. It is responsible
for integrating kernel source code with optional and alternative source code using
the automatically generated variable source code file and feature selection.

File extractor: This component is used to retrieve specifications, designs, source

code, and test procedures for the selected features.

Figure 3.1 summarizes the proof-of-concept prototype SPLET.

Feature Modeling

- Creates a feature dependency tree and defines
feature relations.

- Creates parameterized variables for each
feature

- Links each feature to related specifications,
designs, test procedures, and implementation
components.

- Enters web service components and link them

to their location on the Internet.

- Selects desired features
- Enters values for parameterized variables

verifies feature selection

Generates a customization file that is required
for the dynamic customization of client

applications at system run time.

Separation of concemns & integration components

Creates a variable source code file that stores
related optional and altemative source code for

| each feature to be used in the integration

process

Tracks insertion code in the variable source
code file and the kernel source code

Integrates kernel source code with optional and
alternative code using a variable source code
file and a customization file

Utility

Extracts specifications, designs, source code,
and test procedures of selected features

Figure 3-1 SPLET components

36

37

3.7 Validation

Apply the software product line service-oriented approach to two case studies to validate
this research. The two case studies will be designed and implemented according to the
proposed architecture. The two implementations will be customized to generate
executable target systems. The proof-of-concept prototype SPLET will be used in the
development of the environment of the two case studies and for the customization
process. The two case studies are:

e Hotel system

¢ Radio Frequency Management System

This research’s experimentations will be based on Microsoft NET environment.
Developed web services will be installed on a server with .NET framework support and
Microsoft Internet Information Service (IIS). The generated target systems will be
installed either on the same server or a client workstation that is connected to the server

through an Extranet connection.

38

3.8 Comparison with other approaches

This research builds on previous research efforts. The following sections compare this
research with other known research. Broadly, these research efforts can be classified into
two categories: software architecture and software development approaches. The
breakdown of comparisons under each category:
e Software architecture and product line research
- Service-Oriented Architecture (SOA)
- Component-Based Architecture (CBA)
- web-based software product lines
- Feature Oriented Domain Analysis (FODA)
- Family-Oriented Abstraction, Specification, and Translation (FAST)
- Reuse-driven Software Engineering Method (RSEB)
e Software development approaches and tools
- Aspect-Oriented Programming (AOP) using Aspect]
- Frames technology using XVCL

- Knowledge Base Requirement and Elicitation Tool (KBRET)

3.8.1 Comparison with other software architectures and product line
research
Service-Oriented Architecture (SOA) is an architectural style whose goal is to achieve

loose coupling among interacting software components, which requires developers to

design applications as collections of services [Irek03, Key04]. SOA is described in terms

39

of composing a single system using web services. This research builds on the concept of
SOA with special concentration on the product line unique features, for the purpose of

composing executable target systems.

Component-Based Architecture (CBA) is concerned with the assembly of software
systems from prebuilt software components where components and frameworks have to
conform to certain specifications and middleware [Bachman00]. The PhD dissertation of
Ghulam Farrukh [Farrukh98] builds on the concept of CBA using configurable
components in the development of software product lines. Farrukh’s research presents a
method, which maps a SPL model to a SPL architecture, which is then developed as a
collection of reusable components and stored in a reusable library [Farrukh98].
Components of the entire SPL application are treated as black boxes. Hence the internal
source code of the components is reused without any modification. This research, on the
other hand, is based on software product line for SOA. It addresses the engineering of an
overall web service-oriented customizable software product line system where all
processing activities are separated from the client application and grouped into accessible
web services over the Internet. The internal source code of client applications is treated as
a white box reuse of source code. The client source code is automatically customized
according to one of the customization approaches, which are included in this research.

Black box reuse is used for web services components

The PhD dissertation of Mark Gianturco [Gianturco04] described a new method for

modeling and generating target applications for web-based software product lines. In his

40

research, several web-based patterns were developed to support variability in web pages.
This research also supports variability in software product lines, but differs in the
customization process of target applications. Customization in Gianturco’s research is
based on the modification of the entity objects that are read by the visible web page
objects to display variable input, text, and links to other web pages, keeping a consistent
look and feel of all web pages of target applications. The customization described in this
dissertation is based on feature decisions that are set using a customization file at run
time for the dynamic customization approach, or the integration of kernel source code
with variable source code during code binding time for the static customization approach

using the concept of separation of concerns.

Feature-Oriented Domain Analysis (FODA) is a domain analysis method that is used to
define a family of systems [Kang90, Cohen98]. The FODA method focuses more on
structured analysis than object oriented multiple-view modeling. It includes feature
models, ER diagrams, and functional models. This research builds on the PLUS method,
where features are used to define a family of systems using objects-oriented analysis,
design, and programming. It includes feature models, user interface navigation models,
interaction models, activity models, entity class models, and component interfaces
models. The multiple-view model in this research focuses on designing a SPL service-
oriented auto-customizable system. This research goes further from design to
implementation to cover the relationship between implementation source code and

features for the purpose of customizing and deriving target systems.

41

Reuse-driven Software Engineering Method (RSEB) is a use case object-oriented method
that is used to develop a family of related systems [Jacobson92, Jacobson97]. Variability
is modeled in the use cases using variation points that include “extend” and “include”
relations. Variability in use cases is introduced at these variation points. This research
goes beyond use case modeling into more detailed design to support the development of
customizable SPL systems. Rather than using only variation points to include or extend
use cases, customization in this research is based on feature selection, where a feature can

have one or more use cases.

Family-Oriented Abstraction, Specification, and Translation (FAST) approach is based
on the idea of incorporating abstraction and parameterization techniques into a
configuration language for modeling each member of the software product line. The
configuration of each family member is mapped to templates through a source code
generator [Weiss99]. Target application derivation is based on selecting needed
templates and creating instances of selected templates. Templates are then manually
updated to satisfy the requirement of a target application. Updated templates are then
integrated with kernel source code using the source code generator. The content of
templates in FAST has limited capability for customization. Templates are either selected
or not selected, and selected templates have to be manually updated. Customization in
this research is based on automatic adaptation to selected features at system run time
using a customization file, or customization by integrating selected optional and

alternative variable source code with kernel source code. This research provides a design

42

method and three flexible development approaches and automatic customization methods
with supporting tools to enable developers and application engineers to produce highly
customizable systems that do not require manual update of source code for each target

system.

3.8.2 Comparison with development approaches and tools

This section compares this research with known development approaches for software

product lines and their related tools that are used for customizing target systems.

Aspect-oriented programming (AOP) is a new technology for enabling the
modularization of crosscutting concerns into single units called aspects, which can then
be integrated with the rest of the system at join points [Bodkin02, Lee02]. AOP
technology is used by several researches to define and manipulate variability in software
product lines using aspect files. Aspect files contain specific source code for crosscutting
concerns of variable source code. AOP has no systematic approach for creating these
aspect files and selecting desired variable source code. Aspect files are created in an ad-
hoc way for each target system. Keeping track of all aspect files and variable source code
is very troublesome and error-prone in AOP. Also, feature related mapping of source
code and features are not performed, neither consistency checks are performed based on
selected features. This research provides a systematic approach in modularizing
crosscutting concerns. Optional and alternative source code is grouped based on its
related features in a variable source code file. Application engineers can simply select

desired features and run consistency checks using the customization prototype provided

43

with this research, and the proper source code will be automatically integrated to generate
an executable target system. There is no need for manual modification to source code to

derive a target application, as it is required in AOP for product lines.

Aspect] [Lee02, Bodkin02] is one of the most popular tools developed specifically for
AOP. It is based on JAVA language. It serves as the main engine for integrating
crosscutting concerns using an ad-hoc aspect file. Unlike Aspect], the SPL environment
prototype (SPLET) creates a complete environment for the SPL application. All variable
source code is contained in SPLET by associating variable source code with the SPL
system features. Optional and alternative source code is automatically integrated with
kernel source code using SPLET’s code weaver component by selecting target system
features and applying consistency checks. Also, SPLET is designed to support most

popular languages such as C++, C#, JAVA, J++, and visual Basic.

Frame technology (FT) is based on forming hierarchical reuse assemblies of framed
source code [Basset97, Jarzabek03, Anastasopoulos01, Holmes03]. Source files
are broken down into several hierarchical files, namely frames. The frame language
composes these frames using parameterized variables and “adapt” commands. In an
object-oriented application, frame files can grow large in number and become very
difficult to manage and maintain. Similar to AOP, frames do not describe how to map
features to source code, and do not provide consistency checks to verify whether a set of

frames is consistent with the SPL model. This research provides a systematic approach

44

for relating source code to features for the purpose of automating customization of SPL

applications.

XVCL [HongyuO3] is one of the recently developed tools for frame technology in the
SPL domain. It serves as an engine for integrating frames together based on pre-defined
variables. Similar to Aspect], it does not cover the SPL life cycle and has no automation

to select integrated code.

Knowledge Base Requirement and Elicitation Tool (KBRET) [Gomaa92, Gomaa%6a]
was developed to support feature selection of SPL systems and apply consistency checks
to verify selections. Feature navigation in KBRET does not show the overall breakdown
of the system features and related designs and implementation components. SPLET
enables designers, developers, and application engineers to visualize the entire SPL
system more conveniently. SPLET provides a facility to see and extract all analysis,
designs, code, and test procedures for each feature separately. It also provides a facility to
execute web services components automatically for functional testing of components
without leaving the environment. SPLET includes a facility to create separation of
concerns between optional and alternative source code from kernel source code and an
integration engine for automatic generation of executable target systems by selecting

target system features and applying consistency checks.

45

3.9 Summary

This chapter has addressed the problem statement for this research and explained the
research approach and the breakdown of tasks to be performed. It also provided an
overall comparison with related software design architectures and different development
approaches including their related tools. The design approach will be described in the

next chapter.

http://www.tcpdf.org

‘e o* inghiall)l

4 DARALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Software Product Line Engineering Based on Web Services 1Ulgusll
Saleh, Mazen M. Aquil rosan | alioll

Gomaa, Hassan(Super.) to> aslio

2005 HENVWN PR

bia>)9 uS19,49 ‘8990

618453 :MD 3,

duzol> Jilw, ESYEINIFTY

English :aelll

ol,9:8> allw, ragodell as)all

George Mason University asol=l

Volgenau School of Engineering raudsUl

a,S5,0V daxiodl WLVl radgall

Dissertations 1Wlogleoll aclgd

Olowll awiis (wlogleoll audi oYl «Oliseo)l :&aolgo
https://search.mandumah.com/Record/618453 ol

‘ ‘ abgaxo Jgaxl gaox .Aoghaioll ,l> 2019 ©
Aoz sloll 040 aclb ol Jwoms cliSey abgazo il Sgi> gaox Ol lale il Bei> wlxol go g3sall SYl sle <l aslio bsloll 0in
s ol sl Bgi> Lol o wsbas aurai Ugs (g SV 2yl of iVl g3lgo Jto) aliwg oSl ae uinill ol Jigzill of] gaoug s ol

ol Lalu Zyl_ﬂbl

aoglaioll

www.manharaa.com

https://search.mandumah.com/Record/618453

46

4. A DESIGN METHOD FOR SOFTWARE PRODUCT LINES
BASED ON WEB SERVICES

4.1 Introduction

This chapter describes the software product line modeling approach for product lines
based on Web Service-Oriented Architectures. The Evolutionary Software Product Line
Engineering Process (PLUS) [Gomaa96, Gomaa99, Gomaa04] is used to show the major
activities performed in the development of the proposed Software Product Line (SPL)

based on Web Services.

Product Line Multiple-View Model,
Product Line Product Line Architecture,
Requirements | Product Line Reusable Components

Product Line
Reuse
Library

Target System
Requirements) Target System

Application ————
Engineering

Unsatisfied Requirements, Errors, Adaptations

Figure 4-1 Evolutionary Software Product Line Engineering Process

47

The Evolutionary Software Product Line Engineering Process consists of two main

phases, as shown in Figure 4-1:

¢) Software Product line Engineering. A product line multiple-view model, which
addresses the multiple views of a software product line, is developed. The product
line multiple-view model, product line architecture, and reusable components are
developed and stored in the product line reuse library.

d) Application Engineering. A target system is a member of the software product line.
The multiple-view model for a target system is configured from the product line
multiple-view model. The user selects the desired features for the product line
member (referred to as target system). Given the target system features, the product
line model and architecture are adapted and tailored to derive the target system model
and architecture. The architecture determines which of the reusable components are

needed for configuring the executable target system.

Earlier papers and researches have described how this approach was carried out before
[Gomaa96, Gomaa99] and after the introduction of the UML [Gomaa02, Gomaa04]. This
chapter describes how product line engineering can be carried out for product lines based

on Web Services.

This chapter covers the design of the SPL Engineering Phase based on Web Service-
Oriented Architectures. The design, implementation, and configuration approach

mentioned in this research is focused on SPL for a chain of systems that belong to a

48

single organization, for example, a chain of Hilton hotels or Avis car rentals, where many
branches are distributed in different locations. Each branch will have a software system
customized to its needs based on available facilities. This research addresses the
engineering of an over all Web Service-Oriented customizable software product line
system where all functional activities are separated from the client application and
grouped into accessible Web Services over the Internet. The customizable client
application contains:

e Customizable navigation screens

e Events workflows.

Both contents are described in detail later in this chapter.

Once the Software Product Line is designed and developed, target systems are
customized through the domain independent customization prototype, described in
Chapter 6, for deciding which screen to display, which web service to invoke, and what

parameterized variables to use, based on selected features.

4.2 Design Architecture of SPL Engineering Phase

The design architecture is based on a multiple-view model for Software Product Lines.
The multiple-view model defines the different characteristics of a software family
[Parnas79], including the commonality and variability among the members of the family
[Clements02, Weiss99]. A multiple-view model is represented using the UML notation

[Rumbaugh99, Gomaa00] and considers the product line from different perspectives.

49

This section describes the sofiware product line modeling approach for product lines
based on Web Services. In particular, the multiple-view modeling approach described in
Chapter 3 needs to be tailored for modeling product lines based on Web services. The
method is described by means of a hotel software product line (SPL), which is used as an
example of applying the software design method for software product lines based on web
services. In this example, a Hotel product line is to be created for a hotel chain, which can

be customized to the needs of individual hotels.

4.2.1 Use Case Modeling

Figure 4-2 depicts the Use Case diagram for the Hotel SPL, which captures the overall
software requirements. The Use Cases in Figure 4-2 are categorized as kernel, optional,
or alternative as given by the PLUS environment [Gomaa04]:

e Kernel: Use case that exists in all members of the product line.

¢ Optional: Use case that may or may not exist in a given product line member.

e Alternative: One of a group of alternative use cases is selected for a given product

line member.

The actors for this use case model zul'e the users of the product line, providing inputs to a
product line member system and receiving outputs from it.

¢ Reservation Clerk — Performs actions pertaining to room reservation.

e Front Desk Clerk — Performs duties pertaining to check-in and checkout of hotel

rooms and walk-in reservations.

e Manager —Updates hotel prices and request management reports.

50

Restaurant Staff — Add restaurant charges to guests' billing records.

Timer — Controls the initiation of periodic hotel functions at a predetermined

time.

Briefly, the use cases are:

Make Room Reservation: A reservation or check-in clerk makes reservations for
one or more rooms. Users will also be able to cancel reservations, update
reservations, query reservations, and verify customer credit cards.

Make Residential Reservation As an alternative to room reservation, a hotel can
consist of residential suites, where a guest can occupy a suite for a month at a
time, paying a monthly rate. A guaranteed reservation is required for residential
suites, with payment made on the first day of the month.

Make Block Reservation: A travel company can book a block of rooms for their
customers. The travel company will be billed directly instead of billing customers
individually. Check in and check out will be made for the reserved block.
Check-in Single Customer: The front-desk clerk checks in guests with single
room reservations,

Check-in Block Customer: The front-desk clerk checks in guests with block
reservations.

Checkout Single Customer: The front-desk clerk checks out guests with single

reservations.

al

e Checkout Block Customer: The front-desk clerk checks out guests with block

reservations.

e >
<<optionat>>
Auto Biling <<kemei>>
% Update Prices
- <<optional>> plional>> /;)(
Autto Cancel Print w
Figure 4-2 Use Case Diagram

e Generate Auto Key: Some hotels may use electronic cards for door keys rather
than regular door keys. Assigned room numbers will be encoded on the electronic
cards.

e Auto Billing: At a pre-specified time, bills customers who have guaranteed

reservations and do not show up.

52

Auto Cancel: At a pre-specified time, cancels non-guaranteed reservations.

Bill Restaurant Charges: Restaurant charges are added to guest billing record.
Update prices: Allows managers to update room prices.

Print Reports: Allows managers to request reports such as: No-show réports,

reservation reports, financial reports.

4.2.2 Feature Modeling

A feature dependency model is derived from the use case model. Product line features are

categorized as kernel, optional, or alternative features. By selecting the features required

for a given member of the product line, an application can be derived from the product

line. Related features are grouped together into feature groups. The possible feature

groups are:

e Mutually exclusive groups. Zero or one feature can be selected out of a group of

features.

Exactly one of feature group: One and only one feature can be selected out of a
group of features.

Zero or more of feature group: Zero or more features can be selected out of a set
of features.

Mutually inclusive group: If one feature is picked the other fgature(s) in the group

must be picked.

The feature model (Fig. 4-3) depicts the features, feature dependencies, and feature

groups for the hotel product line. In this model, “RoomReservation” and

53

“ResidentialReservations” are two alternative features grouped under an exactly-one-of-
feature-group, where the “BlockReservation”, “AutoCancel”, and “AutoNoShowbilling”
optional features depend on the “RoomReservation” alternative feature. If “Residential
Reservation” is selected instead, the above optional features would not be available for

the derived application.

Figure 4-3 Feature Dependency Model

4.2.3 User Interface Navigation Modeling

Since this design method is based on a service-oriented architecture for the product line,
it is important to show the navigation between user interface screens. Each user interface
screen is supported by a user interface object, which is in turn associated with one or

more Web services. Each user interface object contains a GUI and a customizable

54

workflow for members of the software product line. The GUI will be responsible for
accepting user input and user requests to initiate events that are translated into method
calls to web services. After receiving the user input, the user interface object interacts

with the appropriate Web service.

Figure 4-4 shows the system navigation from the user perspective. Each user interface
screen is supported by a user interface class, which is categorized as kernel, optional, or
alternative. Each class is depicted with two stereotypes, the role stereotype is <<user
interface>> and the reuse stereotype, such as <<kernel>> or <<optional>>. The
navigation model depicts the user interface classes that can be accessed from a given user
interface class. For example, from the Main Reservation user interface, the Room
Reservation user interface can be reached. Based on the features desired for a given
product line member, all kernel classes will be selected, some of the optional classes will
be selected, and a choice is made among alternative classes. Each user interface object

interacts with relevant web services, which is shown in the dynamic model.

55

Figure 4-4 User Interface Navigation Model

Figure 4-5 shows a sample GUI for the “RoomReservation” user interface class, one of

the classes that is depicted on the navigation model in Figure 4-4.

56

Figure 4-5 GUI-RoomReservation Ul

4.2.4 Interaction Modeling

Next, the interaction between the user interface object, described in the previous section,
and the appropriate Web service is modeled. This section describes the interaction
between the user interfaces and web services. Figure 4-6 is a collaboration diagram for
“RoomReservation” user interface object for processing a reservation for a single room.
Since the core functionality is encapsulated in Web services classes, the collaboration
diagram shows the interaction at a high level. To reserve a room, the system requires 3

web services: AvailabilityWs, CreditWS, and ReserveRoomWS. The user interface

57

object accepts the guest’s information and directs the input to the appropriate web service

as shown in Figure 4-6.

1: provide guest info — AR
<<variant>>
— <<yserinterfa : “‘é'::dm’
:RoomReservation
<< variant->
<<web service>>
RoomReservationWs

6: Confirmed T 5: check and

availability

update availability

<<web service>>

AvailabilityWs

<< kemeb>

Figure 4-6 Collaboration Diagram — Reserve single room

Figure 4-7 provides more detail describing the object interaction within each web service

and between web services and user interface.

58

<< varient>>
<<web sevice>>
<< kemel>> : -Makereservation
<oweb service>> RoomReservationWs <<varient>> <<kernel>>
CreditWs <<bus. Logic>
BeseveRoom | S7.Resevation | :MakeReservation
and staus
2validate CIC T l 3: CIC vaiidated
z S6. Create
1: provide guest S5. Create
i —_ . billing record
info, <<variant>> 51 Ressrvationnfo resevation mﬂl Ny bites
—— <<userinterface>> AT
:RoomReseivation $6: send reservation number <<kameb> <<kemeP>
e and status (available] <<entity>> <<entity>>
R " BillingRecord
D1=8Z: check and v
s s 4 | T p7=s3 conimed avaiiabitty
<< kemel>>
<<web service>> b2
AvailabilityWs - Request
<<kemet> deczement faom fype <<kemel>>
<< 2 <<bus. Logic>>
—
SetSingleAvaitability D6. Set availability SetAvaliability
confimation
D3. Read room type count Room
[roomCount > 0}
<<kemel>>
«cerﬂy:p»
‘RoomCount

Figure 4-7 Expanded Collaboration Diagram — Reserve single room

4.2.5 Activity Modeling

The activit-y diagrams, in the SPL Service-Oriented approach, describe the workflow of
each event initiated by the user. Each user interface object is associated with one or more
workflows. Workflows have two major tasks:
e Invoke web services: Workflows show the sequence in which web services
methods are called for processing a complete event.
e Invoke other user interfaces: Workflows show the navigation pattern in which

other user interfaces are invoked.

59

The workflow for the SPL Service-Oriented architecture is customized during target
system configuration. Figure 4-8 shows a customizable activity diagram for the
“MainReservation” user interface. “ResidentialReservation” Ul and “Room Reservation”
UI are mutually exclusive alternatives where only one of them can be invoked by the
user. During customization, a path will be selected for the application to identify which
GUISs or web services will be invoked. Feature conditions are used for this purpose. For
example, [feature = RoomReservation] and [feature = ResidentialReservation] are two
feature conditions used in the activity diagram of Figure 4-8 to show the mutually

exclusive feature decisions in the workflow. The customization of workflows is described

in detail in Chapter 5.
.*@
ture=RoomReservation [feature=ResidentialReservation
AND RoomReservation is
selected]

Invoke

Invoke Room h :

Reservation Ul Residential

Reservation Ul

Figure 4-8 Activity Diagram— Main Reservation

60

Figure 4-9 is an overall activity diagram for the “RoomReservation” UL It shows all the

possible events that can be initiated by a user and all web service method calls.

=) EE e g &

) (=) (55 (=

Figure 4-9 Activity Diagram — Overall Room Reservation Ul

Figure 4-10 shows a sample workflow for processing a single room reservation. The
aétivity diagram in this figure shows the workflow and required web service methods for
reserving a single room. Once the front desk clerk verifies the guest’s credit card by
calling the “CreditWS” web service, reservation can be made by calling the

“ReserveRoomWS” web services.

61

[exit] @

[reserve room selected]

Call o
CreditWsS Verify RoomReservation
CC() WS _ReserveRoom()
Display C/C
verification info i ot available]

[available]

Display Display Not
Confirmation available
info message

Figure 4-10 Activity Diagram—Reserve Room

4.2.6 Software Architecture Modeling

4.2.6.1 Web Services

From the activity modeling, all possible service requests are identified. These services are
organized and grouped into related web services based on their objects interaction,
described in section 4.2.4 - Interaction Modeling. Figure 4-11 shows a sample grouping
of methods into Web Services. For example, ReserveRoom Web Service contains these

related methods: Reserve Room, Cancel Room, Modify Room, Check-in Room, and

62

Check-out Room. These methods may share internally some of the web service objects.
However, all objects are hidden within each web service. They can not be inherited by
other web services. For example, the entity class RoomCount is used by ReserveRoom,
ModifyRoom, and CancelRoom methods in the RoomReservationWS web service. The
RoomCount entity is used to store room availability information. The above methods

update this entity using different business logic objects.

<<variant>> «_vam» <<pptional>> n‘;m";;,
<<web service>> <<web service>> <<web service>> <<web service>>
RoomReservationWs ResidentialReservationWs BlockReservationWs ReporfWWs
ReserveRoom() ReserveResidential(} ReserveBlock() FinancialRepori()
ModifyRoom() ModifyResidential() ModifyBlock() ReservationReport()
CancelRoom() CancelResidential{) CancelBlock() NoShowReport()
CheckinRoom() CheckinResidential() CheckinBlock()
CheckoutRoom() CheckoutResidential() CheckoutBlock()
<<optional>> <<kemel>> <<kemnel>>
<<web service>> <<web service>> <<web service>>
AutoKeyWsS CreditWs Availability\Ws
encodeKey() VerifyCC() CheckSingleAvailability ()
Cha CheckRangeAvaitability ()
SetSingleAvailability ()
SetRangeAvailability()

Figure 4-11 Example of Web Services grouping

Web Services Methods are developed according to the specified design. A Web Service
encapsulates the implemented methods as a black box, hiding all internal activities from
the outside world. These black boxes use the same XML/SOAP technology to interface

with outside applications. Variability is handled by the client application according to the

63

customizable workflows. During customization of client application, workflows are

customized to determine which web service to invoke.

4.2.6.2 Web Service Input/Output

Since all interactions between user interfaces and Web services rely on message
conununication; it is very important to specify all inputs to and outputs from each method
of the Web service. Figure 4-12 gives sample input/output for three of the Web methods

of the ReserveRoomWS Web service.

Input Type | Output Type
Method
ReserveRoom() Name string ReservationNumber int
Address string ReservationStatus string
Tel int
CreditCardNo int
ExpirationDate date
CreditType string
RoomType string
ArrivalDate date
NumberOfDayes int
NumberOfOccupancy | int
ModifyRoom () Name string Confirmation int
Address string string
Tel int
CreditCardNo int
ExpirationDate date
CreditType string
RoomType string
ArrivalDate date
NumberOfDays int
NumberOfOccupancy | int
CancelRoom () ReservationNumber string Confirmation string

Figure 4-12 Sample Input/Output for ReserveRoomWS

64

4.2.7 Attributes of Entity Classes

An important part of modeling Web services is to capture the attributes of the entity
classes, which are information intensive. The collaboration diagram on Figure 4-7 depicts
three entity objects. The entity classes and their attributes are depicted in Figure 4-13,
which is the information needed for completing a reservation transaction and recording

the information in the database.

<<kemel>> <<kernel>> <<kemel>>

<<entity>> <<entity>> <<entity>>

Reservation BillingRecord RoomCount
Name: sfring ReservationNumber: int RoomType: sfring
Address: string ChargeType: string NoOfRooms: int
Tel: string Charge: int Date: date
CreditCardNo: int

ExpirationDate: date
RoomType: string
ArrivalDate: Date
NumberOfDays: int
NumberOfOccupancy: int

Figure 4-13 Sample Entity Attributes for ReserveRoomWS

4.2.8 Design of Component Interfaces

In developing the software architecture, the objects from the interaction model are now
designed as components in terms of their interfaces and interconnections using the UML
2.0 structured class notation. Components communicate with each other through ports,
which support provided and/or required interfaces. Figure 4-14 shows an example of how

ports and connectors facilitate component interactions. Components are categorized

65

(using UML stereotypes) to show the kernel, variant, or optional components for the
product line. The “RoomReservation” user interface component has two required ports
(consisting of required interfaces): RVerify and RReserve, which are used to connect it to
the “CreditWS” and “RoomReservationWS” web service components. Figure 4-14 also
shows the connection between two different web service components,

“RoomReservationWS” and “AvailabilityWS”.

- = RVEny F'Verify << kemel>>
RoomReservation CreditWS

RReserve

<< variant>>
<<server>>
PReserve RoomReservationWs

RAvailabilitySet

PAvailabilitySet

<< kemel>>
<<server>>

AvailabilityWs

Figure 4-14 Example of ports and connectors - RoomReservation Feature

RVerify
fant>
<<user inferface>> IVerify
RoomReservation IReserve
RReserve

PVerify

<< kemel>>
1Verify <<server>>
CreditWs

PReserve

<< yarnant>>
IReserve cégenvers
RoomResli_apraﬁonWS

PAvailabilitySet
IAvailability Set

IAvailabilitySet

ﬁ? PAvailabilitySet
t << kel_‘melb:b

<<gerver>>

Availability WS

Figure 4-15 Example of ports, provided, and required interfaces

66

Figure 4-15 defines the required and provided interfaces for the interfaces shown in

Figure 4-14. The interfaces between user interface and web service components are

designed using a client/server pattern such that a user interface component always

requires a port provided by a web service component, while a web service component

always provides a port for the user interface component. The interaction between web

service components or between user interface components can result in a component

having both provided and required ports.

Figure 4-16 shows the interfaces of components using the UML static modeling notation.

This design depicts the provided web service methods for each interface. Web service

67

methods are invoked based on the customized workflows of the product line, as described

earlier in the customizable activity diagram (Section 4-2-5).

<F;EMerface>> - <<interface>> <<interface>>
IVerify IReserve |AvailabilitySet
VerifyCC() ModifyRoom() SetSingleAvailability()
CancelRoom()
ReserveRoom()

Figure 4-16 Example of port interfaces design

4.3 Summary

This chapter described the software product line modeling approach for product lines
based on Web Service-Oriented Architecture where all functional activities are separated
from the client application and grouped into accessible web services. The design
architecture is based on a multiple-view model for Software Product Lines. The multiple-
view model defined the different characteristics of a software family [Parnas79],
including the commonality and variability among the members of the family
[Clements02, Weiss99]. A multiple-view model was represented using the UML notation
[Rumbaugh99, Gomaa00] and considered the product line from different perspectives.
The method was described by means of a hotel software product line (SPL), which was
used as an example of applying the software design method for software product lines
based on web services. In the example, a hotel product line was created for a hotel chain,

which could be customized to the needs of individual hotels.

http://www.tcpdf.org

‘e o* inghiall)l

4 DARALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Software Product Line Engineering Based on Web Services 1Ulgusll
Saleh, Mazen M. Aquil rosain | alioll

Gomaa, Hassan(Super.) to>l aslio

2005 HENVWNFTRT]

bia>)9 uS19,49 ‘8990

618453 :MD 3,

duzol> Jilw, ESYEINIFTY

English :aelll

ol,9:8> allw, ragodell as)all

George Mason University asol=l

Volgenau School of Engineering raudsUl

a,S5,0V daxiodl WLVl radgall

Dissertations 1Wlogleoll aclgd

Olowll awiis (wlogleoll audi oYl «Oliseo)l :&aolgo
https://search.mandumah.com/Record/618453 ol

‘ ‘ abgiaxo Beaxl gae anghainll 1> 2019 ©
Aoz 3kl 030 dclb of Juams cliSey abgamo pissll F9i> geox 0l lale oyinll Foi> ol go gdsall Byl (e el d>lio bsloll 0in
s ol sl B> wlol o wnbis aupai s (s SVl asl gl oVl gdlgo Jin) @laaws oSl puc il ol ool ol sl gaoug s ol

ol Lalu Zyl_ﬂbl

.aoglaioll

www.manharaa.com

https://search.mandumah.com/Record/618453

68

5. DEVELOPMENT APPROACHES FOR PRODUCT LINE
CUSTOMIZATION AND SEPARATION OF CONCERNS

5.1 Introduction

This chapter describes three different approaches to develop a Software Product Line
Web Service-Oriented Architecture and implementation, where all service activities are
separated from the client application and grouped into accessible web services over the
Internet. The three development approaches are based on a client/server design pattern
specific to Service-Oriented Architecture (SOA). Client applications contain only user
interfaces and customizable workflows that are responsible for orchestrating web services
invocation and user interfaces calls. Server applications contain all web services and
database support. The three development approaches follow the same design method,
described in chapter 4, but differ in the customization process. The three approaches are:
¢ Dynamic customization of client application (DCAC). Dynamic customization is
defined in this research as customization of application objects at system run time.
Objects are customized using a customization file that contains the target system
selected features and values of parameterized variables.
¢ Dynamic customization of client application with separation of concerns (DCAC-
SC). The second development approach is an extension to the first method by

incorporating the separation of optional and alternative feature source code from

69

kernel source code at product line development time, and the integration of all
separated source code with kernel source code at customization time.

e Static customization of client application with separation of concerns (SCAC).
Static customization is defined in this research as customization of application
objects at system customization time. Objects are customized by integrating
kernel source code with only selected optional and alternative source code

producing the exact source code needed for running a single target system.

The three development and customization approaches are based on the Software Product
Line Environment for Service-Oriented Architecture (SPLE-SOA) that is provided with
this research. This chapter starts by describing the first development approach (DCAC) in
section 5.2. Section 5.2.1 applies the DCAC approach to the hotel system case study.
Sections 5.2.2 and 5.2.3 list the advantages and disadvantages of using the DCAC
approach. Section 5.3 introduces the issue of separation of concerns, which is used in the
next two development approaches (DCAC-SC and SCAC). Section 5.4 describes the
second development approach (DCAC-SC). Section 5.4.1 applies the DCAC-SC
approach to the hotel system case study. Section 5.4.2 lists the advantages and
disadvantages of using the DCAC-SC approach. Section 5.5 describes the third
development approach (SCAC). Section 5.5.1 applies the SCAC approach to the hotel
system case study. Sections 5.5.2 and 5.5.3 list the advantages and disadvantages of using
the SCAC approach. Section 5.6 compares the three development approaches. Section 5.7

describes the usage of each approach. Section 5.8 summarizes this chapter.

70

5.2 Dynamic customization of client application

The first development approach is based on the dynamic customization of the client
application, where objects are customized at system run time using a customization file
that contains the target system selected features and values of parameterized variables.
Figure 5-1 shows a conceptual overview of the approach. It consists of the customizable

SPL system architecture and the SPL environment.

The customizable SPL system architecture in Figure 5-1 is based on the client/server
design pattern, where the client application contains only user interface objects and a
customizer object, and the server application contain all web services and database

support.

71

Customizable SPL system architecture

Software product line

- Components Values of parameterized
variables

environment
Application Engineering
SPL engineering
- SPL I~—™|Customization
model file
Feature - Analysis mode Parameterized Feature selection
dependency tree - Design model variables &

Figure 5-1 Conceptual overview of DCAC approach

The software product line environment in Figure 5-1 shows a conceptual overview of the
approach from the SPL engineering phase to the application engineering phase (SPL
customization). The overall life cycle is based on the PLUS method

[Gomaa00,Gomaa04], which includes the following steps:

72

e SPL Engineering:

- Analyze SPL customizable system

- Design SPL customizable system

- Implement SPL customizable system

e Application Engineering (SPL customization):

- Use the feature selector to select desired features and apply consistency
checking rules, described in Chapter 6.

- Store target system customization information in the customization file
using the customization file generator. The customizable application will
read this file to customize user interface objects and their workflows,
described in detail in the Dynamic Client Application Customization
Pattern in Figure 5-2.

® Deploy the customizable SPL system and related web services.

The customizable SPL system uses the customization file produced in the application
engineering phase to customize a target system at run time. The customizer object (Fig.
5.1) reads the customization file and stores all customization information in the
customizer object’s local storage (arrays, data table, etc.) to be used for customizing the
client application user interfaces and their workflows. User interfaces are customized by
enabling or disabling buttons, and by setting appropriate display variables. Workflows

are customized by tailoring decisions on which user interface to call or which web

73

service to invoke. This approach is described in the Dynamic Client Application

Customization (DCAC) Pattern in Figure 5-2.

The activities specific to this research relate to each phase in Figure 5-1 and are as
follow:
e SPL engineering phase:

- SPL feature editor: Allows users to create a feature dependency tree and
define feature relations, create parameterized variables for each feature,
and link each feature to related specifications, designs, test procedures,
and implementation components.

e Application engineering phase:

- Feature selector: Allows users to select desired features, and to enter
value of parameterized variables.

- Consistency checker: This component is part of the feature selector. It
serves as a check for selecting features. When a feature is selected, the
consistency checker is invoked to verify selection by consulting the
feature dependency model for inconsistent feature selection.

- Customization file generator: This component is responsible for
generating a customization file that is required for the dynamic

customization of client applications at system run time.

74

The DCAC approach is described next as an architecture pattern. It provides a detailed
description of the development approach, which can be applied to any SPL application

based on web services.

Dynamic Client Application Customization Pattern
Intent
Provide a consistent reusable solution to the implementation architecture of a
client/server software product line using web services with provision for dynamic
client application customization.

Motivation

The goal of developing software product lines is to promote flexible software
reuse. With the introduction of web services to SPLs, there is a need for
developing a systematic approach that enables developers to implement a
customizable system that can be dynamically customized into many single target
systems without the need to modify any of the source code. Using the feature
selector component, user interfaces and workflows of SPL systems can be
automatically adjusted at run time to serve a single target system.

Solution
The idea behind the (DCAC) pattern is the development of dynamic client
application that can be customized at system run time.

The DCAC Pattern has two main steps:
1. SPL Customization
2. Target application interaction

Step 1: SPL Customization

This step involves selecting desired optional and alternative features to be
included in the target system. The feature selector component provides a facility
to make feature selection from a SPL model and run consistency checks to verify
selections. Once features are selected, selection information will be stored in the
customization file by the customization file generator. The dynamic client
application is customized by reading the customization file at run time.

Components description:
e Feature selector: Allows users to selects desired features, and allows entry
for parameterized variable values.
e Consistency checker: Verifies feature selection.
Customization file generator: Generates a customization file for each
target system.

75

(DCAC pattern — Continue)

e SPL model database: Contains feature tree, feature relations, analysis
model, design model, components, and parameterized variables.

o Customization file: Contains feature name, feature selection status
(true/false) and values of parameterized variables.

Dynamics
The following scenario depicts the customization process of a target system:
e Application engineer selects desired features for a target system using
feature selector component.
e Consistency checker is invoked to verify selection by consulting the SPL
model.
e Generate a customization file, which will be used by the client application
for dynamic customization at run time.

wﬂ% Consistency Customization file : \
e Feature selector checker generator SPL mode

Sdedt rgetaystent | [> verty
features and enter
wvalues of parameterized|
variables

customizaion fle

;
?

: 1_Invoke®- 1| Consistency | Verify »
Feature editor Wi A
1\ checker |1 1| SPL model
A

Customization file
generator

(DCAC pattern — Continue)

Step 2: Target application interaction
The Dynamic Client Application Customization (DCAC) Pattern divides an
interactive application into three components:

e Customizer component

e User interface component

e Web Service component

Customizer component contains all customization information for a single target
system. At run time, the customizer object reads the customization file and stores
all customization information in the customizer object’s local storage (arrays, data
table, etc.) to be used for customizing the client application user interfaces and
their workflows. Customization information consists of enabled or disabled
features and parameterized variables.

User interface component is responsible for accepting input from users and
allowing invocation of possible service requests. It involves the sequencing of
web services invocation and handling of message communication based on the
customizable workflow. It is also responsible for displaying results to users
coming from the web service component.

Web Service component is a collection of functional methods that are packaged as
a single unit and published in the Internet, Intranet, or Extranet in a private or
public UDDI for use by other software programs, in this case the user interface
component.

77

(DCAC pattern — Continue)

Class
Customizer

Responsibility

- Reads customization information
from the customization file /
database

Collaboration

- Customization
file

Class
Web service

Responsibility

- Process a service request based on
provided input

- Returns results of processed
requests

Collaboration

- User interface

Class
User interface

Responsibility
- Calls customizer class to:

- Enable or disable user interface
components based on selected
features

- Customize user interface

- Customize workflow by setting up
appropriate method calls and
calls to other user interfaces
based on selected features

- Invoke and pass parameters to
appropriate web service(s)

- Receives results from web
service(s)

- Display information to the user

Collaboration

- Customizer
- Web service

78

(DCAC pattern — Continue)

Dynamics

Once the target application features are selected in the SPL customization step, the
application will be ready for execution. The application interaction step describes
the two processes that occur at execution time: dynamic customization and object

interactions.

Step 2-1: Shows how the client application is dynamically customized at run time.
e Starts main client application program.
Customizer object is invoked at main client application program startup.
Customizer object reads customization information once from the
customization file that is generated by the customization file generator.
e Customization information can be read by all user interface objects

through the customizer object.
Main client , Customization
applicati Progra:‘ Customizer File
Start T -
' Invoke L
S R # customization info o
= Provide customization info
(Feature names,
Features selection status,
T Features Variables)
Mainclient | Invokem

Customizer

application Program | 1

Customization
File

Generate p=

Feature selector &
Customization file
generator

79

(DCAC pattern — Continue)

Step 2-2: Shows how user interface objects interact with service requests using
the DCAC pattern:

Customization of user interface at run time
e User invokes a user interface.
e User interface requests customization information from customizer object.
e User interface reads the customization information to:
- Customize user interface components
- Defining appropriate calls to web services based on selected
features.
- Define appropriate calls to other user interface objects.
- Update parameterized variables.
Customization is based on feature selection information stored in the
customization file.

User interface and web service interaction

e User requests an activity by entering input data and clicking a button.

e User interface object passes the activity request and input data to a web
service method(s).

e Web service processes the request and passes the results to the user
interface object. A web service may also request services from other web
services.

e User interface object displays results received from web service.

80

(DCAC pattern — Continue)

User Interface Customizer Web Service
Customization of user
interface at run time
StriCreain ST B
customization info
— Customize user interface and
I Update parameterized variables,
User interface and web Lﬁ
service interaction J-‘
-_.._.._._.—b
User Input Request Service]
Process
[E overt
Call other
web
services
Service response Bl
{E Display result
T
Customizer
1
A
i Read customization info
Invoke B

User interface

L

Call other Ul

L |

Update

1.2

Invoke other web service

Web service

t |

Figure 5-2 Dynamic Customization Workflows (DCAC) Pattern

81

82

5.2.1 Development of DCAC pattern

This section describes the development of the DCAC pattern. Two examples from the
hotel software product line will be presented to illustrate this development:

e Main Reservation User Interface.

e Reserve Room User Interface.
The first example (see section 4.2.5) shows how alternatives and optional features are
treated in the source code, while the second example shows how a service request is

performed using web services. Both examples will explain the transition of design into

implementation.
.—@
[feature=BlockReservation
AND BiockReservation is
selected]
[feature=RoomReservation [feature=ResidentialReservation
AND RoomReservation is i

selected]
Invoke
Invoks Room Residential
Reservation Ul :
Reservation Ul

Figure 5-3 Activity Diagram - Main Reservation Ul

83

Figure 5-3 shows a customizable activity diagram for the “MainReservation” user
interface. This diagram shows “ResidentialReservation” UI and “RoomReservation” Ul
as mutually exclusive alternatives where only one of them can be invoked by clicking the
single reservation button of “MainReservation” user interface (Figure 5-4).
“BlockReservation” Ul, on the other hand, belongs to an optional feature. It will be either
enabled or disabled based on whether the BlockReservation feature is selected by the

User.

The customizable SPL application uses the customization file generated in the application
engineering phase to customize a target system at run time (step 1 of DCAC pattern). The
customizer object reads the customization file once and stores all customization
information in the customizer object’s local storage (arrays, data table, etc.) to be used for
customizing the client application user interfaces and their workflows. The
MainReservation Ul is customized by reading the feature selection and the value of
parameterized variables from the customizer object to enable or disable buttons and set
appropriate display variables. Its workflow is customized by setting features to true or
false and applying feature condition settings to user interface calls andl web service
invocations (step 2 of DCAC pattern). The following explains the customization in more

detail.

84

?ubic MainReservation() public Customizer()

bool roomRes, residRes, blockRes ;

roomRes = Cst featureSelection(ROOMRESeVaton) . | R gad feature status (YAY) RoorsResersation i
residRes = Cst featureSelecton(ResidetiaReservation) ; > ResidentiaBecereation | N
blockRes = Cst featureSelection(BlockReservation) ; J } e e
/! Display ALL GUI components

if (blockRes == ¥")
#l Create block reservation button
blockRes_button. visible = true; /f enable OPTIONAL button

_Bepdio eina p| B
MainResUITitle. Text = Cs.varSelection(MainResTitle) ; ——

private void singelRes_bution_click{)
{

Figure 5-4 shows an actual implementation of the activity diagram in Figure 5-3. It shows
how the MainReservation Ul object can be customized at run time and how it interacts

after the dynamic customization.

85

Customization of client application at run time:

Object MainReservation is customized by reading the feature selections stored in
the customizer object and stores them in local variables, where they will be used
throughout the MainReservation object. Local feature variables roomRes,
residRes, and blockRes store the RoomReservation, ResidentialReservation, and
BlockReservation feature decisions respectively and are set to “Y” or “N”,

depending on whether the feature is selected or not.

During the customization process, optional button “Block Reservation” is created
if blockRes is equal to “Y” and ignored otherwise.
if (blockRes == “Y”)

// Create block reservation button
blockRes button.visible = true;

During the customization process, the parameterized variable MainResTitle is
read from the customizer object to set the appropriate header title of the

“MainReservation” user interface.

MainResUlITitle. Text = Cst.varSelection(MainResTitle);

86

User interface object interaction:

After the dynamic customization process is complete, the MainReservation user interface

is ready to accept user input.

If Single Reservation button is invoked, either “ResidentialReservation” UI or
“RoomReservation” UI will be called, depending on whether RoomReservation
feature or ResidentialReservation feature is selected.
if (roomRes == “Y”)
// display RoomReservation Ul
else if(residRes == “Y”)
/ display ResidentialReservation Ul

If Block Reservation button is enabled and invoked, “BlockReservation” UI will

be called.
private void blockRes button click()
{
// display BlockReservation Ul
}

Since “MainReservation” Ul has no service request to process, there will be no

web services involved at this user interface.

The second example shows how a service request is processed in the “RoomReservation”

UL Once the “RoomReservation” Ul is invoked, it initiates the dynamic customization

process, described in the previous example. The user interface is now ready to accept user

input and service requests. For the illustration, make single reservation service request is

explored.

87

.—@

Accept user
request

[exit] @

[reserve room selected)]

Call
RoomReservationWS.R
eserveRoomy()

:\ [not available]

[available]
. L
Display Display Not
Confirmation info vailable message

Figure 5-5 Activity Diagram — RoomReservation Ul

Figure 5-5 is an activity diagram showing the workflow of processing a single reservation
(Reserve button clicked). It has the following activities:

e Customize “RoomReservation” Ul

e Accept user input that is required to make a single reservation, such as name,

address, duration, and credit card, etc.

e Accept user request to process a single reservation.

38

e RoomReservationWS will be invoked. Web service method ReserveRoom() will
process the request.

e Web service method ReserveRoom() will invoke AvailabilityWS web service and
call SetSingleAvailability() method. This method will attempt to update the room
availability list in the database.

e Results will be returned to “RoomReservation” UL

¢ A confirmation or a decline message will be displayed in the “RoomReservation”

UL

Figure 5-6 is a collaboration diagram for making a single reservation (reserve button
clicked). It shows all required objects and their interaction. Since “RoomReservation” Ul
object has no decision related to alternative or optional feature selection, the customizer

‘object is not shown in the collaboration diagram. Making single room reservation

collaboration diagram is implemented in figure 5-7.

Mopom o) Bujddew spod

1: provide guest info

4: confirmed 3: checkand

avaitability

Figure 5-6 Collaboration Diagram — RoomReservation

?m*vuld Reserve_button_click()

MessageField.Text = “Reservation not available™
} N

beol avaitabilty;

intresNo;

v ws el
Con WS res = new R Con. R -

mmmw-::mm _— ca

resNo = res.ReserveRcom(Name, Address, ahvaiDate, days , CC), —— |

if{resho 1= =)

reservationNo. Text = resNo ; Display rgservation number_

else

Avaiabilty WS

89

i

Call to Availablity WS

Figure 5-7 Implementation - RoomReservation Ul

90

Figure 5-7 is an implementation sample of the “RoomReservation” UI object of the

collaboration diagram in Figure 5-6. The following will explain the process:

RoomReservation user interface object is responsible for all communication with
RoomReservationWS methods. It passes input parameters entered in the graphical
user interface and calls ReserveRoomWS web service invoking ReserveRoom()
method.

ReserveCon.ReserveRoomWS res = new ReserveCon.ReserveRoomeWS();
resNo = res.ReserveRoom(Name, Address, arrivalDate, days , CC);

ReserveRoom() web service method of the ReserveRoomWS web service
processes the entire service request. A web service may call one or more web
services methods. In this case, SetSingleAvailability() method is invoked from the
AvailabilityWS web service.

ReserveRoom() method returns a numeric reservation number, which is stored in
the local variable resNO of the RoomReservation user interface and the database.
RoomReservation user interface displays results received.

Either reservation number or a decline message is displayed to the user.

91

5.2.2 Advantages of DCAC approach:

Client application is involved with workflows only. All service requests are
processed using web services. This makes it easier to develop a client application
quickly and construct it for dynamic customization at run time. Also, this makes it
easier to develop web services individually and incorporate them in the SPL
Service-Oriented application.

No source code extraction or update of source code to fit target systems. The
customizable SPL application is created once with all possible features
incorporated in the interactive application. Target systems are dynamically
customized at run time by reading the customization file that is generated during
the application engineering phase using the feature selector component.

No recompilation of target system applications. The customizable SPL application
is compiled only once to generate an executable SPL application that can be
customized dynamically at run time.

Since Web Services process all service requests, it is easier to test each request
separately using the provided standard interface of web services.

Software reuse: Web services are developed once and can be reused by target

applications.

92

5.2.3 Disadvantages of DCAC approach:

Source code overhead: All optional and alternative source code is interwoven
with kernel source code in the interactive client application. Selected optional and
alternative source code blocks are invoked at run time using a customization file
that includes feature selection.

No fixed workflows. Workflows are driven by feature selection, which adds an
extra activity to the interactive application by applying decisions at run time to
which optional or alternative web service to call, or what UI components to
display.

There is no separation of concerns between kernel source code and optional and

alternative source code.

93

5.3 Introduction to the customization approaches based on
separation of concerns

The second and third development approaches apply the Aspect-Oriented programming
(AOP) and framing technology (FT) concepts, described in Chapter 2, to separate the
optional and alternative source code from kernel source code, which is referred to as
separation of concerns. The concept of AOP and FT will be tailored to accommodate the
capturing of variability based on feature grouping of related optional and alternative
source code in a variable source code file that is used for the purpose of customization

and integration with consistency checking support.

The second and third development approaches apply the AOP concept of separation of
concerns and code weaving. Separation of concerns is used to separate variable source
code form kernel source code in a variable source code file. In AOP for product lines
[Leasint04, Loughran04a, Anastasopoulos04], the aspect file is used to store all
required source code needed for a specific target application with no consideration to
variable source code. Therefore, for every target application an aspect file has to be
manually created to satisfy its requirements. In this research, the variable source code file
stores all variable source code to be integrated (weaved) according to the two proposed
automatic customization and integration processes with no manual modification to the
variable source code file when deriving a target application. A detailed comparison of

AOP and this research was described earlier in section 3.8.2.

94

The next two development approaches apply the concept of FT by grouping feature
related variable source code in different files, similar to frames, which are composed into
one variable source code file. But unlike frames, the two development approaches in this
research provide a systematic method for relating source code to features for the purpose
of automating customization and integration of SPL applications with consistency
checking support to verify feature selection. A detailed comparison of FT and this

research was described earlier in section 3.8.2.

The second development approach applies separation of concerns for applications that are
customized dynamically at run time. Optional and alternative source code is separated
from kernel source code in a variable source code file. Separated source code is then
integrated with kernel source code in the code weaving process to generate the complete
SPL application source code. Integrated source code is compiled once and becomes ready
for execution. Target applications are then customized using the feature selection and
consistency checking process to generate a customization file that stores feature selection
and parameterized variables. The executable SPL application reads this file to apply

customization of client applications at run time.

The third development approach applies separation of concerns for applications that are
customized during source code integration time. Optional and alternative source code is
separated from kernel source code in a variable source code file. But unlike the second

development approach where feature selection is performed after source code integration

95

is complete, the feature selection process in the third development approach is performed
before the source code is integrated. The code weaver engine reads feature selection and
integrates only selected optional and alternative feature source code with kernel source
code. The integrated source code is compiled and becomes a customized executable

target application.

5.4 Development of dynamic customization of client application
with separation of concerns

The second development approach is an extension to the first method (DCAC), described
in sections 5.2 to include the separation of concerns. It is based on the dynamic
customization of client applications, where objects are customized at system run time.
However, this method provides the separation of optional and alternative source code
from kernel source code into a variable source code file. Figure 5-8 shows the overall
method of DCAC-SC from the SPL engineering phase to the application engineering
phase (SPL customization), which is the same as the DCAC method. It also depicts the
separation of concerns that is added to the DCAC method. It shows the needed facilities
to create the separation of concerns, feature selection, consistency checking, and
integration of kernel source code with optional and alternative source code. The result of
the integration process is a combined set of source code for the entire software product
line including all optional and alternative source code. The source code integration
process and compilation are performed only once to generate an executable SPL system.
Target systems will rely on the dynamic client application customization at system run

time, which is identical to that produced by the first approach (DCAC).

96

Similar to DCAC approach, ‘the customizable SPL system uses the generated
customization file produced in the application engineering phase to customize a target
system at run time. The customizer object reads the generated customization file and
stores all customization information in the customizer object’s local storage (arrays, data
table, etc.) to be used for customizing the client application user interfaces and their
workflows. User interfaces are customized by enabling or disabling buttons, and by
setting appropriate display variables. Workflows are customized by customizing

decisions to which user interface to call or which web service to invoke.

Since this approach is based on SPL Service-Oriented Architecture, separation of
concerns focuses on:

e Separation of optional and alternative service calls.

e Separation of optional and alternative calls to user interfaces.

e Separation of optional and alternative user interface components, such as buttons

headings, and images.

This approach is described in the Dynamic Client Application Customization with

Separation of Concerns (DCAC-SC) Pattern in Figure 5-9.

Customizable SPL system architecture

Customizable Ul
object

Customizer object

¥

AN

Software product line
environment

SPL engineering

Application Engineering

Customization
file

Feature selection
&
Values of parameterized
variables

Figure 5-8 Conceptual overview of DCAC-SC approach

97

Dynamic Client Application Customization with Separation of Concerns Pattern

Intent
Provide a consistent reusable solution to the implementation architecture of a

software product line using web services with provision for dynamic client

application customization and separation concerns.

Motivation

This pattern is an extension to the DCAC pattern, which does not address the issue
of separation of concerns. This issue needs to be introduced for the purpose of
reducing complexity of developing SPL applications, maintenance, and system
evolution.

Solution

The idea behind the (DCAC-SC) pattern is the development of dynamic client
application that can be customized at system run time by separation of concerns
between kernel source code and optional and alternative source code.

The DCAC-SC Pattern has four main steps:
1. Separation of concerns between kernel and variable source code
2. Code weaving
3. SPL Customization (the same as the DCAC pattern)
4. Target application interaction (the same as the DCAC pattern)

The above steps have to be performed in sequence. First, separation of concerns
and code weaving have to be performed. The SPL application can then be
customized by selecting desired features. Target applications are compiled to
produce an executable SPL application.

Step 1: Separation of concerns between kernel and variable source code:

This step involves separating kernel source code from optional and alternative
source code into a variable source code file where separated source code is
grouped by features. Optional and alternative source code is identified by unique
insertion point names in the variable source code file. Insertion points have to be
also included in the kernel source code to specify the location where optional and
alternative source code will be inserted.

98

(DCAC-SC pattern — Continue)
Dynamics
The following scenario depicts the dynamic behavior of separation of concerns:
e Create application classes with kernel source code.
e Create a variable source code file that contains source code related to
alternative and optional features.

¢ Add insertion points to kernel source code where optional and alternative
source code from the variable source code file will be inserted.

Kemel Source Code Variable source code file
Class.......(} SFEATURE [A] // Optional Feature
{
: /ss'rm'r insl
- // Code
$START insl/ D 2ol
. $START ins2
/ // Code
S8END ins2
ENDFEATURE
SSTART ins2/ $ENDFEN Il

SFEATUREINTERACTION([X,Y]

/'ySSTART ins3

§START ins3 /.// 1f{Feature-X == true) // Alternative Feature
// Code

else iffFeature—Y == true)// Alternative Feature
// Code

$END ins3

$ENDFEATURE INTERACTION[X, Y]

(DCAC-SC pattern — Continue)

Language description:
e Kernel source code
- $START <<insertion name>>: Specifies insertion location in
kernel source code

e Variable source code file
- $START <<insertion name>>: Identifies optional or alternative
source code that needs to be inserted at the location specified in the
kernel source code.

- $END <<insertion name>>: Specifies the end of insertion code.

- FEATURE [<<feature name>>]: Groups optional and alternative
source code in a feature block. Feature blocks are integrated with
kernel source code during the code weaving process based on
insertion names.

- FEATUREINTERACTION[<<feature 1, feature 2, ...>>]: Groups
related features source code that requires decisions on which
source code to execute at run time. If-then-else statement is used
within the insertion name of the feature interaction block with
feature identifiers in the decision statement to be integrated as-is in
the kernel source code based on the language used to develop the
SPL application. At run time, only one of the decisions will be
executed based on feature selection during SPL customization.

- ENDFEATUREINTERACTION []: Specifies the end of feature
interaction source code.

100

(DCAC-SC pattern — Continue)

Step 2: Code weaving

This step combines kernel source code with optional and alternative source code
from the variable source code file. This process is based on the Code Weaver
component, which reads the variable source code file and inserts all source code
blocks from that file into the kernel source code at the specified insertion
locations.

Dynamics
The following scenario depicts the dynamic behavior of code weaving process:
Run the code weaver component.
e Read optional and alternative source code from the variable source code
file and integrate it into kernel classes at the specified insertion point

locations.
e Compile integrated source code to generate an executable dynamic SPL
application.
I Kernel source code] lVﬁfiaUE source cch
Class A Class B Class C

SPL client
application
source code
A
. Executable
Compiler = ok

101

(DCAC-SC pattern — Continue)

Create Kemel code in dasse;hl—

Add Insertion points where all
code from the feature file will be
inserted

Create a variable source code Lo

file that contains code related to
alternative and optional features

Read variable source code file =

and integrate all source code
into kemnel classes at the
specified insertion locations

Compile the integrated source B
code to generate an executable

dynamic SPL system

—

!

Develop client
application classes

Add insertion points in
kemel classes

Create variable source
code file

Weave code

Run executable SPL
application

l
®

s
i

The following diagram shows the complete process of separation of concerns and
source code integration:

variable
source
code file

code

Integrated

code

Executable

code

102

103

(DCAC-SC pattern — Continue)

Step 3: SPL Customization

This step is identical to the SPL customization step in the DCAC pattern. It
involves selecting desired optional and alternative features to be included in the
target application. The feature selector component provides a facility to make
feature selection from a SPL model and run consistency checks to verify
selections. Once features are selected, selection information will be stored in the
customization file using the customization file generator. The dynamic client
application is customized by reading the generated customization file at run time.
This step is described in full in step 1 of the DCAC pattern.

Step 4: Target application interaction

This step is identical to the target application interaction step in the DCAC
pattern. This step follows the SPL customization step. Once the target application
features are selected, the application will be ready for execution. This step
describes how the client application is customized dynamically at run time, and
how user interface objects interact with service requests. This step is described in
full in step 2 of the DCAC pattern.

Figure 5-9 Dynamic Client Application Customization with Separation of Concerns Pattern

5.4.1 Development of DCAC-SC pattern

This section describes the implementation of the DCAC-SC pattern. The
“MainReservation” UI from the hotel product line will be used for this illustration. The
ideas presented in this example can be applied to all user interfaces. The example will
illustrate the approach of separating optional and alternative source code from kernel
source code into a variable source code file. It will also explain the integration of variable
source code with kernel code to produce a dynamically customizable SPL application.

The separation and integration of source code is based on the DCAC-SC pattern.

104

Figure 5-10 Activity Diagram - Main Reservation Ul

Figure 5-10 shows the same customizable activity diagram used to illustrate the
implementation of method 1 (DCAC). However, this example includes separation of
concerns, which is not addressed in the previous method. The customizable activity
diagram represents the “MainReservation” user interface. It shows
“ResidentialReservation” UI and “RoomReservation” UI as mutually exclusive
alternatives where only one of them can be invoked by clicking the single reservation
button of “MainReservation” user interface (Figure 5-11). “BlockReservation” UL, on the
other hand, belongs to an optional feature. It will be either enabled or disabled based on
whether BlockReservation feature is selected by the user. These decisions are set during

application run time, the same as for the DCAC pattern.

105

All source code in the variable source code file will be extracted and integrated with the
kernel source code. The result of the integration process is a SPL system that is identical

to method 1 (DCAC).

o

Figure 5-11 MainReservation graphical user interface

Figure 5-11 is the graphical user interface for “MainReservation” UI class. It shows two
event buttons: Single reservation and Block Reservation. If single reservation button is
clicked, either “RoomReservation” UI or “ResidentialReservation” UI will be invoked.
Also BlockReservation button will either be visible or invisible based on feature selection

during the SPL customization process.

106

Public class MainReservation

public MainReservation()

{
I Related features : RoomReservation
i RedientialReservation
i BlockReservation

Iboolroon'Res. residRes, blockRes ;
Customizer Cst = new Customizer() ;
momRes = Cfoeaw:eSaechm{HoomHesewamn)

residRes = Cst featureSelection(Residetial
blockRes = Cst featureSelection(BlockReservation) ;

I Dispiay ALL GUI components @bﬁ SFEATUREINTERACTION [RoomReservation, ResidentialReservation]
:)% 1 insert your aspect code here
MainResUITitle. Text = Cs.varSelection(MainResTitle) $START RoomResidentiell)
SSTART BlockResButton [i roomRes == v7)
: : 11 Display Roo

mReservationU!
= oomReservationl rc = new RoomReservationl() ;
\nsett ggggf—“) n: Show() ;
— else if{ residRes = “Y")
b‘ I:ispley ResidentialReservationUl
esidentialReservation! rs = new ResidentialReservationl() ;

private void singelRes_button_click()

$START RoomResidentialUl
}

private void blockRes_button_click()

$START BlockResU|
} SENDFEATUREINTERACTION [RoomReservation, ResidentialReservation]
e
TURE[BlockReservation]

blockRes_button.visible = true;
Y $END BlocResBution

ART BlockResU!
i{l‘{bbdﬂes =="Y")
blockReservation br = new blockReservation() ;
br.Show() ;

BlockResUl
$ENDFEATURE[BlockReservation]

Figure 5-12 Implementation - Main Reservation Ul

Figure 5-12 shows both the kernel source code of the “MainReservation” Ul and variable

source code in the variable source code file. Insertion points are the key for integrating

107

variable source code with kernel source codé. The code weaver engine is responsible for
this integration. The code weaver reads all application class files and locates insertion
points. It then reads the variable source code file and adds variable source code at the
location of the insertion points based on matched feature names. The key command
$START is followed by an insertion name, which is used for the integration process.
Both kernel source code and variable source code in the variable source code file contain
the same insertion point name. Insertion point in the kernel source code identifies the
location of the insertion, and insertion name in the variable source code file identifies

which variable source code is to be inserted.

Based on the DCAC-SC approach, all optional and alternative feature source code in the
variable source code file is inserted in the kernel source code at the location of the
insertion point; customization is done at run time. For example, the insertion point
SSTART BlockResButton refers to the optional feature “BlockReservation” in the variable
source code file. The variable source code will be inserted in the kernel
“MainReservation” Ul class at the place of the insertion point: $START BlockResButton.

At run time, this button will be either visible or invisible based on feature selection.

Public class MainReservation

public MainReservation()

{
If Related features : RoomReservation
n RedientialReservation
] BlockReservation

.I-‘.-' Display ALL GUI components

Customizer Cst = new Customizer() ;
bool roomRes, residRes, blockRes ;
roomRes = Cst featureSelection(RoomReservation) ;

residRes = Cst featureSelection(ResidetialReservation) ;
blockRes = Cst featureSelection(BlockReservation) ;

1l START BlockResButton —l

if (blockRes == “Y™) <
I/l Create block reservation button
blockRes_button.visible = false;

MainResUITitle. Text = Cs.varSelection{MainResTitle) ;

private void singelRes_button_click()

11 $START RoomResidentialUl
if{ roomRes = “Y")

¢ /I Dis RoomReservationUl
RoomReservationl rc = new RoomReservationl() ;

) rc.Show() ;

:Iu if{ residRes == “Y")

[Dism ResidentialReservationUl
ationl rs = new ResidentialReservationl() ;
rs.Show() ;

}
private void blockRes_bution_click()

I $START BlockResU!
if (blockRes = “Y™)

{ blockReservation br = new blockReservation{) ;
) br.Show() ;

Variable source code inserted at
$START BlockResButton
insertion point

A

e

Variable source code inserted at
$START RoomResidentialUl
insertion point

Variable source code inserted at
$START BlockResUl

Figure 5-13 Implementation - Main Reservation Ul

108

109

Figure 5-13 shows the “MainReservation” UI class after the integration process. In this
class, the BlockReservation feature and the RoomReservation feature are inserted in the
kernel source code. Inserted blocks are:
e Insertion point SSTART BlockResButton in the kernel source code is replaced
with the following source code from the variable source code file:
// START BlockResButton
if (blockRes == “Y”)
// Create block reservation button
blockRes button.visible = true;
e Insertion point $START RoomResidentialUI in the kernel source code is

replaced with the following source code from the variable source code file:

// START RoomResidential Ul
if(roomRes == “Y”)

{
// Display RoomReservationUI
RoomReservationl rc = new RoomReservationl() ;
rc.Show() ;

}

else if(residRes == “Y”)

{
// Display ResidentialReservationUl
ResidentialReservationl rs = new ResidentialReservationl() ;
rs.Show() ;

}

e Insertion point $START BlockResUI in the kernel source code is replaced

with the following source code from the variable source code file:

// START BlockResUI
if (blockRes == “Y”)
/

blockReservation br = new blockReservation() ;

br.Show() ;

110

Figure 5-14 shows the insertion points needed in the “Mainreservation” UI class. This
figure has to be added to the modeling of SPL Service-Oriented Architecture, discussed
in chapter 4. Insertion points are depicted from the activity diagram, where feature
conditions are stated to show the possible workflows for a single target application. The
activity diagram in Figure 5-10 shows three different decisions that need to be set when
customizing the target system workflow. These decisions are presented as feature
conditions, which are:

e RoomReservation alternative feature condition

o ResidentialReservéiion alternative feature condition

e BlockReservation optional feature condition

Feature Name Feature Type | Class Name Insertion Point Name

BlockReservation Optional MainReservation | BlockResButton
BlockResUI

RoomReservation Alternative | MainReservation | RoomResidentialUl

ResidentialReservation | Alternative | MainReservation | RoomResidentialUl

Figure 5-14 MainReservation UI - Insertion points list

111

5.4.2 Advantages and Disadvantages of DCAC-SC approach:

Since this development approach is an extension to the DCAC, the advantages and
disadvantages are the same as of the DCAC approach in sections 5.2.2 and 5.2.3 except
for the issue related to separation of concerns. The DCAC-SC method provides an
advantage over DCAC by supporting the concept of separation of concerns between
kernel source code and variable source code for the purpose of reducing complexity of
developing and maintaining software product lines. This issue was one of the

disadvantages of DCAC pattern that is solved by the DCAC-SC pattern.

112

5.5 Development of static customization of client application
(SCAC) with separation of concerns

The third development approach also includes the separation of optional and alternative
source code from kernel source code. However, it is based on static customization of
client applications, where objects are customized at source code integration time using a
variable source code file, customization file, and an integration engine. Objects are
customized by integrating kernel source code with only selected optional and alternative
source code from the generated variable source code file producing the required source

code needed for running a single target application.

In the SCAC method, optional and alternative source code is separated from kernel
source code in a variable source code file for the purpose of generating customized target
applications. But unlike the DCAC-SC method, where feature selection is performed
after source code integration is complete, the feature selection process (SPL
customization) in the SCAC method has to be performed before the source code is
integrated. The code weaver engine reads feature selection and integrates only selected
optidnal and alternative feature source code with kernel source code. The result of the
integration process is an integrated source code file for the customized target application.
The SPL customization, source code integration, and compilation are performed for each
target application, unlike the DCAC-SC where source code integration and compilation
are done only once to generate a dynamically customizable system at run time. This

method produces a target application that is already customized and ready to execute.

Figure 5-15 shows a conceptual overview of the approach. It depicts:

Separation of concerns

SPL system architecture

SPL environment

Separation of concems

SPL system architecture

Feature

Parameterized —
variables

Application Engineering

Customization
file

Feature selection
&
Values of parameterized
variables

Figure 5-15 Conceptual overview of SCAC approach

113

114

Separation of concerns in Figure 5-15 is based on separating kernel source code from
optional and alternative source code into a variable source code file where separated
source code is grouped by features. The code weaver component is used as an integration
engine. The code weaver reads feature selection from the customization file and
integrates selected feature source code from the variable source code file with kernel

source code.

The SPL system architecture in Figure 5-15 is based on the client/server design pattern,
where the client application contains only user interface objects, and the server
application contains all web services and database support. In this approach there is no
customizer object used, which was required in the DCAC and DCAC-SC for dynamic

customization at run time.

The software product line environment in Figure 5-15 shows a conceptual overview of
the approach from the SPL engineering phase to the application engineering phase (SPL
customization), which is the same as the first and second development approaches
(DCAC and DCAC-SC). It shows the needed facilities to create the SPL environment,

select target application features, apply consistency checks, and generate a customization

file.

This approach is described in the Static Client Application Customization (SCAC)

Pattern in Figure 5-16.

115

Static Client Application Customization Pattern
Intent .
Provide a consistent reusable solution to the implementation architecture of a
software product line using web services with provision for static customization of
client application using the concept of separation of concerns.

Motivation

The goal of developing software product lines is to promote flexible software reuse.
With the introduction of web services to SPLs, there is a need for developing a
systematic approach that enables developers to implement a customizable overall
system that can be customized into many single target systems using a systematic
method for extracting the required source code for each target system.

Solution

The idea behind the Static Client Application Customization (SCAC) pattern is the
separation of concerns between kernel source code and optional and alternative
source code for the purpose of extracting only required source code for running a
target system.

The SCAC Pattern has four main processes:
1. Separation of concerns between kernel and variable source code
2. SPL Customization
3. Code weaving
4. Target system interaction

The above steps have to be performed in sequence. Variable source code has to be
separated from kernel source code in the separation of concerns step. The SPL
customization has to be performed next to select the target application features
before integrating variable source code with kemel source code in the code
weaving step. The customization file generated in the SPL customization step is
required in the integration process. Target applications are compiled to produce an
executable target application.

Step 1: Separation of concerns between kernel and variable source code

This step involves separating kernel source code from optional and alternative
source code into a variable source code file where separated source code is grouped
by features. This step is similar to the separation of concerns step in the DCAC-SC
pattern, but differs in the construction of the variable source code file to include
necessary decisions when more than one feature is involved within an insertion
point name. These decisions enable the code weaver engine to integrate only
selected variable source code rather than integrating all variable source code as
done in the DCAC-SC.

116

Dynamics
The following scenario depicts the dynamic behavior of Separation of concerns:

(SCAC Pattern — Continue)

e Create application classes with kernel source code.

¢ Create a variable source code file that contains source code related to
alternative and optional features.

* Add necessary decisions within insertion point names for insertions that
involve more than one feature (feature interaction).

® Add insertion points to kernel source code where optional and alternative
source code from the variable source code file will be inserted, based on

feature selection.

Kemel Source Code

Class........{)
{

$START insl

$START ins2

$START ins4

]
]
: F

Variable source code File

e
s

\

SFEATURE [A]

$START insl
// Insertion

$END insl
SSTART ins2

// Insertion
SEND ins2

SENDFEATURE [A]

code

code

// Optional Feature

SFEATURE [X]
$START ins3

// Insertion

S$END ins3

$ENDFEATURE [X]

code

// Alternative Feature

SFEATURE[Y]
$START ins3

// Insertion
SEND ins3

SENDFEATURE [Y]

code

// Alternative Feature

SFEATUREINTERACTION([C,D]

$START ins4

$IF FEATURE([C,D]
// Insertion code

SELSEIF FEATURE[C] //Only feature C selected

// Insertion code

SELSEIF FEATURE[D] //Only feature D selected

// Insertion code

$ENDIF
SEND ins4

SENDFEATUREINTERACTION[C,D]

//Both features selected

117

(SCAC Pattern — Continue)
Language description:
e Kernel source code
- $START <<insertion name>>: Used to specify insertion location in
kernel source code

e Variable source code file
- $START <<insertion name>>: Used to identify optional or
alternative source code that needs to be inserted at the location
specified in the kernel source code.

- $END <<insertion name>>: Specifies the end of insertion source
code.

- FEATURE [<<feature name>>]. Groups optional or alternative
source code in a feature block. Feature blocks are integrated with
kernel source code during the code weaving step based on insertion
names.

- FEATUREINTERACTION[<<feature 1, feature 2, ...>>]: Groups
related feature source code that requires decision on which source
code is to be included in the code weaving step.

- $IF FEATURE [<<feature 1>>, <<feature 2>>, ..]: A programmatic
decision point within the FEATUREINTERACTION block that is
used to notify the code weaver engine whether to include the
following source code block or not based on selected features in the
customization file.

- $ELSEIF FEATURE [<<feature name>>]: A programmatic ELSEIF
point to be used in case the IF FEATURE statement is false.

- S$ENDIF: Specifies the end of the decision statements.

- ENDFEATUREINTERACTION []: Specifies the end of feature
interaction source code.

118

(SCAC Pattern — Continue)

Step 2: SPL Customization

This step is identical to the SPL customization step in the DCAC and DCAC-SC
patterns. However, this step has to be performed before integrating variable source
code with kernel source code in the code weaving step. It involves selecting desired
optional and alternative features to be included in the target application. The feature
selector component provides a facility to make feature selection from the feature
model and run consistency checks to verify feature selections. Once features are
selected, selection information will be stored in the customization file by the
customization file generator. The code weaver component reads this file to
integrate selected feature source code with kernel source code.

Step 3: Code weaving

This process combines kernel source code with optional and alternative source code
from the created variable source code file and the customization file. This step is
based on a source code integration engine, which reads the variable source code file
code and inserts only selected source code that is related to selected features into
the kernel source code at the specified insertion locations. This means, if an
optional feature is selected, its related source code in the variable source code file
will be inserted in the target system, and if one or the other alternative feature is
selected, only related source code of the selected alternative feature is inserted in
the target system at the location of the insertion point. Feature grouping and
insertion points are the key for separation of concerns and source code integration.

119

(SCAC Pattern — Continue)
Dynamics

The following scenario depicts the dynamic behavior of code weaving step:

Run the code weaver component.

e Read selected optional and alternative source code from the variable source
code file and integrate it into kernel classes at the specified insertion point
locations. The generated customization file is used for making decisions on

which feature source code to insert.

e Compile integrated source code to generate an executable target system

with only the required target system source code.

Kemel source code Variable source code

Class A Class B Class C

Target System
Source Code

Compiler

| Executable

120

The following diagram shows the complete processes of separation of concerns,

feature selection, and code weaving:

(SCAC Pattern — Continue)

!

g::::""“" swumecededn <7l Create client I Kemel
application classes s::d?
= A
=i ™ I
Add Insertion points where 2
source code fromthe variable | Add insertion points in |/
source code file will be inserted classes
based on feature selection
Create é variabl code) ——
LNGSOuT Create variable source Variable
file that contains source code i pon i source
related to alternative and optional code file
features
Select target system features B ‘-"
and run consistency checks =~ - Select features
Read selected features and : Kemel
integrate related source code oty Weavecode @~ [source
from the feature file into kemel Y code
| classes K
Compile the integrated source — Integrated
code 1o generate an executable [--——--- Compile ----==| SOUTCE
target system code
Y Ny
Run Executabletarget | Executable
application code

;
®

121

(SCAC Pattern — Continue)

Step 4: Target application interaction
Once the interactive application is integrated and compiled, it will have the
following components structure:

e User interface component

e Web service component

User interface component is responsible for accepting input from users and
allowing invocation of possible service requests. It involves the sequencing of web
services invocation and handling of message communication based on the
customized workflow. It is also responsible for displaying results to users received
from the web service component.

Web Service component is a collection of functional methods that are packaged as a
single unit and published in the Internet for use by other software programs, in this
case the user interface component.

Class Collaboration Class Collaboration
Web service User interface
Responsibility - User interface Responsibility - Web service
- Process a service request based on - Accepts user input and service
provided input request
- Retumns results of processed - Invoke and pass parameters to
request appropriate web service(s)
- Receives results from web
service(s)
- Display information to the user

122

(SCAC Pattern — Continue)
Dynamics

The following scenario shows how service requests are processed using SCAC:

User invokes a user interface

User requests a service by entering input data and clicking a button

e User interface passes the service request and input data to a web service

method(s).

e Web service processes request and returns results to the user interface. A

web service may also request service from other web services.
e User interface displays results received from web service.

=

T e i
User Input Request Service

Web Service ||

i

Y

2

Process
event

Call other

———
Service response = i
HT_l Display result
Irvoke = .
User Interface P 1| Web Service
[} 4
Call other Ul Invoke other web service

Figure 5-16 Static Client Application Customization (SCAC) Pattern

123

5.5.1 Development of SCAC pattern

This section describes the development of the SCAC pattern. The “MainReservation” Ul
from the hotel product line is used for this illustration. The ideas presented in this
example can be applied to all other user interface objects. The example will illustrate the
approach of separating optional and alternative source code from kernel source code into
a variable source code file. It will also explain the integration of variable source code file
code with kernel source code to produce a customized single target system. The
separation and integration of source code will be based on the SCAC pattern, which
includes the following activities: variable source code file creation, feature selection,
consistency checking, and source code integration. Integrated source code is compiled to

create an executable target system. The example follows the processes described in the

SCAC pattern.

'AND RoomReservation is
selected]

Figure 5-17 Activity Diagram - Main Reservation Ul

124

Figure 5-17 shows the same customizable activity diagram used to illustrate the
implementation of method 1 (DCAC) and method 2 (DCAC-SC). However, this example
focuses on generating static client applications from a SPL system by extracting only
required source code for running a target system. The customizable activity diagram
represents the “MainReservation” user interface. It shows “ResidentialReservation” Ul
and “RoomReservation” Ul as mutually exclusive alternatives where only one of them
can be invoked by clicking the single reservation button of “MainReservation” user
interface (Figure 5-18). “BlockReservation” UI, on the other hand, belongs to an optional
feature. It will be either enabled or disabled based on whether BlockReservation feature
is selected by the user. These decisions are made at source code integration time, unlike
the DCAC and DCAC-SC patterns where decisions are made during application run time.
In SCAC, only selected feature source code is extracted from the variable source code
file and integrated with the kernel source code using the code weaver engine and the

customization file.

Figure 5-18 MainReservation graphical user interface

125

Figure 5-18 is the graphical user interface for “MainReservation” Ul class. It shows two
event buttons: Single reservation and Block Reservation. If single reservation button is
clicked, either “RoomReservation” UI or “ResidentialReservation” UI will be invoked.
Also BlockReservation button will either be visible or invisible based on feature selection

and the SPL customization process.

Figure 5-19 shows both the kernel source code of the “MainReservation” UI and optional
and alternative source code in the variable source code file. Insertion points are the key
for integrating source code together. If an optional feature is selected, its related source
code in the variable source code file will be inserted in the target system at the location of
the insertion point. For example, the insertion point 8START BlockResButton refers to the
optional feature “BlockReservation” in the variable source code file. If this feature is
selected, the related source code will be inserted in the kernel “MainReservation” Ul

class in the place of the insertion point: 8START BlockResButton.

Also, if one or other alternative feature is selected, only source code related to the
selected alternative feature is inserted in the target system at the location of the insertion
point. For example, the insertion point 8START RoomResidentialUl refers to the
alternative features RoomReservation and ResidentialReservation in the variable source
code file. Only one of the alternative source code blocks will be inserted. The code
weaver engine will read the feature selection from the customization file and make the

decision as to which source code block to insert.

126

Public class MainReservation $FEATUREINTERACTION[RoomReservation,ResidentlaiReservation]

{
——— e ARt
/i Related features : RoomReservation / $ELSEIF FEATURE '
I/ RedientialReservation MainReUITitle = Residential Reservation”™ ;
" BlockResevation $ENDIF =i
SENDFEATUREINTERACTION[R: vation, R nj

.;7 Display ALL GUI components iﬂmﬂ%a##WMMWMHHHHMIWMHHHNMJW

SSTART MainReserveTitle 4 $START RoomResidentialUl
f tionl rc = new i0) .

$START BlockResButton rc.Show() ;
$END RoomResidentialUl

S$ENDFEATURE]RoomReservation]

private void singelRes_button_cli I B
R = o SFEATURE|ResidentiaiReservation]

$START RoomResidentialUl

1 $START RoomResidentialUl

private void blockRes_bution_click() 13.Show() o = new 0:
void 3

{ -7 $END RoomResidentialUl

} S oty $SENDFEATURE]RoomReservation]
SRR R R Ao
$FEATUREBlockReservation]

"\ SSTART BlockResBution
ficreate Block reservation button
blockRes_button visible = true;

P | R

Figure 5-19 Implementation - Main Reservation Ul

Feature dependency verification is handled during feature selection using the consistency
checker component. The consistency checker verifies feature selection and notifies the
user whether his selection is valid or not by consulting the feature model and applying
consistency checking rules, described in Chapter 6. The generated customization file will
then contain all selected and verified features. The code weaver engine reads the
customization file and makes decisions on which source code blocks to insert. The
command $FEATURE[<<feature name>>] is read by the code weaver engine and

crosschecked with the customization file to verify whether the feature condition is set to

127

true or false. If it is set to true, the related source code block in the variable source code

file is integrated with the kernel source code. Otherwise the source code block is ignored.

The $START RoomResidentialUI insertion point is used in both alternative feature
groupings SFEATURE[RoomReservation] and SFEATURE[ResidentialReservation]. In
the customization file, only one of the alternative features will be set to true in the feature
selection process (mutually exclusive features), and only the variable source code block

that is related to the selected feature is integrated with the kernel source code.

The command SFEATUREINTERACTION[<<feature 1, feature 2, .>>] groups related
variable source code that require a decision on which source code to include in the
integration process. It is used when several features are affected by the feature selection
decision. $FEATUREINTERACTION[RoomReservation, ResidentialReservation] is
used to group the mutually exclusive alternative features RoomReservation and
ResidentialReservation in one decision block. The decision commands $IF
FEATURE[RoomReservation] and $ELSEIF FEATURE [ResidentialReservation] are
used to specify which source code block to integrate based on feature selection in the
customization file. The decision commands provide flexibility to developers during
source code construction time to qucify different actions that are required when two or

more features are selected within the feature interaction block. For example:

128

3IF FEATURE[feature 1, feature 2]
// insert code A
SELSEF FEATURE [feature 1]
// insert code B
SELSEF FEATURE [feature 2]
// insert code C
The above source code means that if feature 1 and feature 2 are selected then insert

source code A. If only feature 1 or feature 2 is selected then insert either source code B or

C blocks.

The variable source code file in Figure 5-19 can also be rewritten to include alternative
features RoomReservation and ResidentialReservation in one feature interaction grouping
rather than two different feature groupings as shown in Figure 5-19. The sample source

code in figure 5-20 shows the structure of the grouping:

129

f’"ﬂc class MainReservation $FEATUREINTERACTION[RoomReservation,ResidentlalReservation]
public MainReservation() TART MainReserveTltle
{ $IF FEATURE[RoomReservation|
TR S SEI.:E@RI-;.‘EJATu; .“a"m:?mw nl;
" RedientialReservation iy Nl
i BlockReservation o® / ,E,,‘[',?,E’R’U"“ = "Main Residential Reservation” ;
. ND MainReserveThie

TR

/1 Display ALL GUI components
N $START RoomResidentialUl

$START MainReserveTitle $IF FEATURE[RoomReservation] g)f Aftemative feature
R R onl e = new Ri ()
$START BlockResButton . rc.Show() ;

} il $ELSEIF FEATURE[ResidentialReservation] ' // Atemative feature
ResidentialReservation! rs = new ResidentialReservation() ;
rs.Show() ;

SENDIF

vate void si Res_button_click()
” Posifes. - $END RoomResidentialUi

$START RoomResidentialUl
}

private void blockRes_button_click()
$START BlockResUI

SENDFEATUREINTERACTION[RoomR

% 3 e
\ $FEATURE[BlockReservation] Il Optional Feature

| $START BlockResButton
ficreate Block reservation bution
blockRes_button.visible = true;

% $END BiocResButton

|~ $START BlockResU|
blockReservation br = new blockReservation() |

br.Show() ;
$END BlockResU|
$ENDFEATURE[BlockReservation]

Figure 5-20 Implementation - Main Reservation Ul

Even though in this case there is no different action required when two or more features
are selected because the two features are mutually exclusive, Figure 5-20 demonstrates
the possibility of combining related variable source code blocks into one feature
interaction block. This is an implementation decision that is left to the developer.
However, if different actions are required when two or more features are selected, feature
interaction grouping is mandatory to enable the code weaver engine to make the decision

on which source code block to integrate.

Public class MainReservation
public MainReservation()
/I Related features : RoomReservation

i RedientialReservation
" BlockReservation

/I Display ALL GUI components

MainReUITitle = “Main Room Reservation”) /

licreate Block reservation button | _

/

130

Variable source code inserted at
$START MainReserveTitle
insertion point where
RoomReservation feature is
selected

blockRes_button.visible = true; —|*
}

private void singleRes_button_click()

Variable source code inserted at
$START BlockResButton
insertion point

RoomReservationl rc = new RoomReservationl() ; }
rc.Show() ;

}
private void blockRes_button_click()

blockReservation br = new blockReservation() ;

Variable source code inserted at
$START RoomResidentialUl
insertion point where
RoomReservation feature is
selected

e
br.Show() ; I

Variable source code inserted at
$START BlockResUI
insertion point

Figure 5-21 Implementation - Main Reservation UI with RoomReservation feature

Whether the variable source code file structure of Figure 5-19 or Figure 5-20 is used, the

result of ‘the integration process will be the same. Figure 5-21

shows the

“MainReservation” UI class after the integration process. In this class, the

BlockReservation feature and the RoomReservation feature are inserted in the kernel

source code. Inserted blocks are:

e Insertion point $START MainReserveTitle in the kernel source code is

replaced with the following source code from the variable source code file:

MainReUlTitle = “Main Room Reservation” ;

o Insertion point $START BlockResButton in the kernel source code is replaced

with the following source code from the variable source code file:

131

// Create block reservation button
blockRes button.visible = true;

¢ Insertion point $START RoomResidentialUI in the kernel source code is
replaced with the following source code from the variable source code file:

RoomReservationl rc = new RoomReservationl() ;
re.Show() ;

e Insertion point $START BlockResUI in the kernel source code is replaced
with the following source code from the variable source code file:

blockReservation br = new blockReservation() ;

br.Show() ;
Public class MainReservation
public MainReservation()
/] Related features : RoomReservation
" RedientialReservation
i BlockReservation Variable source code inserted of
- $START MainReserveTitle
insertion point where
L / iaiReservation feature is
/I Display ALL GUI components 3elected :
i / Variable source code NOT inserted of
MainReUlTitle = “Main Residential Reservation” ; $START BlockResButton
insertion point, because
/I $START BlockResButton - BlockReservation feature is NOT
H selected
{privah void singelRes_button_click() gg%m code inserted of
ResidentialReservation rs = new ResidentialReservation() ;L iResnserhon mmmm n feature is
rs.Show() ; _ D
private void blockRes_button_click() gs% source % NOT inserted of
/I$START BlockResUl -< insertion point, because
} BlockReservation feature is NOT
selected

Figure 5-22 Implementation - Main Reservation UI with ResidentialReservation feature

132

Figure 5-22 shows the “MainReservation” UI class after the integration process. In this
class, the ResidentialReservation feature is selected but not the BlockReservation feature.
Therefore, only the source code related to ResidentialReservation feature is inserted in
the kernel source code. Inserted blocks are:
e Insertion point $START MainReserveTitle in the kernel source code is
replaced with the following source code from the variable source code file:
MainReUlTitle = “Main Residetial Reservation” ;
e Insertion point $START RoomResidentialUlI in the kernel source code is
replaced with the following source code from the variable source code file:

ResidentialReservationl rs = new ResidentialReservationl() ;
rs.Show() ;

The implementation of the insertion points in the variable source code file of this method
differs from the DCAC-SC. In the DCAC-SC pattern, insertion points have no decision
conditions to tell the code weaver engine what part of the source code to include or
ignore. In the SCAC method, the IF FEATURE and ELSEIF FEATURE decision
statements are used to extract only selected variable source code and perform the
integration with kernel source code. The SCAC approach is suitable for SPL applications

that require distribution of only needed target application source code.

133

5.5.2 Advantages of SCAC approach:

The advantages of the SCAC are similar to DCAC and DCAC-SC methods regarding the
use of service-oriented architecture in developing software product lines. However this
method has a different advantage at the SPL customization phase. In the SCAC method,
only selected variable source code is extracted from the variable source code file and
integrated with the kemel source code, which means elimination of source code
overhead. Static workflows are produced to eliminate source code overhead for decisions
made during run time as to what optional or alternative source code to execute, which are
required in the DCAC and DCAC-SC approaches. All integrated source code in the

SCAC approach will be used in the target system.

5.5.3 Disadvantages of SCAC approach:

e Source code extraction is required for each target system.

e Target system has to be compiled every time a target system is customized.

5.6 Comparison of customization methods

134

Table 5-1 is a comparison of the three customization methods. It shows all the

characteristics of each method compared to the other two methods.

Method 1 Method 2 Method 3
(DCAC) (DCAC-SC) (SCAC)
Customization At run time At run time At code weaving
time
Insertion points No Yes Yes
Separation of No Yes Yes
common and
variable source code
Application code All optional and All optional and Source code specific
alternative source alternative source to target application

code is included

code is included

Customization of Dynamic Dynamic Static customization

application customization customization

workflows

Common & variable | No integration Once Every time a target

source Code application is

integration customized

Compilation Once Once Every time a target
application is
customized

Feature interaction

in application code

Variable source
code and feature
decisions are
intertwined

Variable source
code and feature
decisions are
intertwined

No feature decisions
in target code

Table 5-1 Comparison of the Three Patterns

135

5.7 Usage of Development Approaches

Based on the advantages and disadvantages of each approach, a development approach
can be selected. The DCAC development approach enables developers to build a
dynamically customizable application that can be customized at run time. Once the SPL
application is developed and compiled, modification to source code of derived target
applications is not required. Application engineers can select desired features for a target

application and generate a customization file to be used at run time.

The DCAC-SC approach is developed to address the issue of separation of concerns
related to the dynamic customization of client applications (DCAC). Developers may use
this approach for better maintenance of SPL applications by separating variable source
code from kernel source code into a variable source code file. However, this approach
requires more work for developers to do the separation and integration of variable source

code and kernel source code.

The SCAC approach is suitable for SPL applications that require extracting only needed
source code to run target applications. This approach eliminates code overhead, which is
required in the first two approaches for making decisions as to what optional or
alternative source code blocks to execute during run time. In this approach, all integrated
source code of selected features will be used in the target system. However, the SCAC
approach requires source code integration and compilation for every customized target

application.

136

5.8 Summary

This chapter has described three development and customization methods to configure
applications from a software product line that is based on service-oriented architecture:
dynamic customization of client application, dynamic customization of client application
with separation of concerns, and static customization of client application with separation
of concerns. A design pattern was used to describe each development and customization
method. Activity diagrams, screenshots, collaboration diagrams and source code samples
illustrate the development of each approach in the context of alternative and optional

feature selection for applications derived from a software product line.

http://www.tcpdf.org

‘e o* inghiall)l

4 DARALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Software Product Line Engineering Based on Web Services 1Ulgusll
Saleh, Mazen M. Aquil rosain | alioll

Gomaa, Hassan(Super.) to>] aslio

2005 HENVWNFTRT]

bia>)9 uS19,49 ‘8990

618453 :MD 3,

duzol> Jilw, ESYEINIFTY

English :aelll

ol,9:8> allw, ragodell as)all

George Mason University asol=l

Volgenau School of Engineering raudsUl

a,S5,0V daxiodl WLVl radgall

Dissertations 1Wlogleoll aclgd

Olowll awiis (wlogleoll audi oYl «Oliseo)l :&aolgo
https://search.mandumah.com/Record/618453 ol

‘ ‘ abgiaxo Beaxl grox anghaiall 1> 2019 ©
Aoz 3kl 030 dclb of Juams cliSey abgamo sl F9i> geox 0l lale (il Foi> ol go gdsall Byl (e el d>lio bsloll 0in
s ol sl B> wlol o wnbi> aupai s (s SVl ayl gl oVl gdlgo Jin) aluaws oSl puc il ol ool ol il gaoug s ol

ol Lalu Zyl_ﬂbl

.aoglaioll

www.manharaa.com

https://search.mandumah.com/Record/618453

137

6. SOFTWARE PRODUCT LINE ENVIRONMENT
PROTOTYPE

6.1 Introduction

This chapter describes the Software Product Line Environment Prototype (SPLET) as a
proof of concept for this research. It is based on the PLUS environment of the
Evolutionary ~ Software Product Line Engineering Process in Figure 6-1
[Gomaa00,Gomaa04]. SPLET is a SPL independent prototype that is designed to cover
the SPL environment. It covers the software product line engineering phase and the

application engineering phase (SPL customization).

Product Line Multiple-View Model,
Product Line Product Line Architecture,
Requirements |p 4 o1 ine Reusable Components
————— F %
Engineering
Product Line
Reuse
Library
Target System
Requirements Target System
— & Applicaion |————>
Engineering

Unsatisfied Requirements, Errors, Adaptations

Figure 6-1 Evolutionary Software Product Line Engineering Process

138

During the software product line engineering phase, SPLET enables SPL engineers to
store links to all design models, architectures, and application components in the reuse
library for the purpose of navigating between the multiple-view models and testing web
service components. In this phase a facility is provided to enable the creation of a SPL
Model that organizes all SPL engineering components by their related features. The SPL

Model is used as the main driver for customizing the SPL application in the next phase.

The application engineering phase is addressed in SPLET through the provided facilities
that enable application engineers to select desired features, run consistency checking
rules, and customize target applications using one of the three implementation

approaches, described in Chapter 5.

6.2 Software Product Line Environment Prototype (SPLET)

The software product line environment prototype is a domain independent prototype that
covers the entire SPL life cycle. It is designed to support most popular languages such as

C, C++, C#, JAVA, and J++.

SPLET prototype is based on organizing a SPL into features that are categorized as
kernel, optional, and alternative. Features are the main driver for organizing SPL
components and customizing target applications. Each feature in the SPL Model stores
links to all related designs, architecture, and implementation components. The SPLET

prototype helps visualize the overall SPL by providing a flexible navigation facility

139

through the SPL Model, and provides the needed facilities to customize target

applications.

SPLET prototype includes the following components:

e SPL feature editor:

Allows SPL engineers to create a feature dependency tree and defines
feature relations.

Allows SPL engineers to create parameterized variables for each
parameterized feature.

Allows SPL engineers to define mappings between features and related
web service components.

Allows SPL engineers to define mappings between features and related

artifacts, such as specifications, designs, and test procedures.

e Web service editor:

Allows SPL engineers to enter web service components and link them to
their location on the Internet. The entered web service list is used by the
SPL engineers to map web services to features using the feature editor

component.

e Feature selector:

Allows application engineers to select desired features

Allows application engineers to enter values for parameterized variables

140

Consistency checker: This component is part of the feature editor. It serves as a
checker for ensuring that selected features are consistent with each other. When a
feature is selected, the consistency checker is invoked to verify selection.
Customization file generator: This component is responsible for automatically
generating a customization file that is required for the dynamic customization of
client applications at system run time. It is based on the feature selector
component. It sets the selection status of each feature to true/false and stores the
values of parameterized variables.

Variable source code editor: Creates a variable source code file that stores related
optional and alternative source code for each feature to be used in the source code
integration process.

Code tracker: Locates insertion source code in the variable source code file and
kernel source code by features.

Code weaver: This component is used for the source code integration process. It is
responsible for integrating kernel source code with optional and alternative source
code using the automatically generated variable source code file and feature
selection.

File extractor: This component is used to retrieve specifications, designs, source

code, and test procedures for the selected features.

Figure 6-2 summarizes the proof-of-concept prototype SPLET.

Feature Modeling

- Creates a feature dependency tree and defines
feature relations.

- Creates parameterized variables for each
feature

- Links each feature to related specifications,
designs, test procedures, and implementation
components.

- Enters web service components and links them
to their location on the Internet.

_| - Enters values for parameterized variables

- Selects desired features

| verifies feature selection

Generates a customization file that is required for
the dynamic customization of client applications
at system run time.

Separation of concerns & integration components

__| related optional and altemative source code for

Creates a variable source code file that stores
each feature to be used in the integration process

__| Tracks insertion code in the variable source code

file and the kemnel source code

Integrates kemel source code with optional and
alternative code using a variable source code file
and a customization file

Utility

Extracts specifications, designs, source code, and
test procedures of selected features

Figure 6-2 SPLET components

141

142

Figure 6-3 shows a detailed description of SPLET components. It consists of four
subsystems: feature modeling, customization, separation of concerns, and supporting

utility components.

Feature Modeling

Feature model E]

e |- Analysis
SO
- Components

Feature selection

Values of
Parameterized variables

SPL kernel
source files ||

Target source
files

Read links to arifacts
vy] - Selected analysis
- Selected design
- Selected components
- Selected test procedures

Figure 6-3 Detailed description of SPLET

143

Figure 6-4 shows the main screen of SPLET with its division of subsystems shown in
Figure 6-3. The next section describes in detail each subsystem and its related

components.

Figure 6-4 SPLET - Main Screen

6.2.1 Feature Modeling Subsystem:

This subsystem consists of two components: SPL Feature Editor and Web Service Editor.
The two components interact with the SPL. Model database for creating the feature model

and all product line artifacts. Product line artifacts consist of specifications, designs, web

144

service components, source code, and test procedures. This subsystem is the basis for all
other subsystems. Figure 6-5 shows the subsystem and the interaction between the
components and the SPL model database. The subsystem consists of two components:
SPL Feature Editor and Web Service Editor. The SPL feature editor component is used to
create the feature model as a hierarchical feature tree. It also associates the SPL artifacts
to their related features. The -web service editor component is used to enter all needed

web services for the SPL application. The SPL model database is the reuse library for the

SPL environment.

Feature Modeling

Feature model \—‘

- Analysis
- Design
- Components

Figure 6-5 Feature Modeling Subsystem

Figure 6-6 shows the entity class diagram for the SPL model. It consists of the following

entity classes:

MainFeatureSelection: Stores all feature names, their description, features type (kernel,
optional, alternative), and feature grouping names of related alternatives.

Variable: Stores parameterized variables for each parameterized feature.

145

Target Applications SPL Environment
ParentFeature
- feature: String
- parent: String
TargetSystemFeature o alts |
- TargetSysName: String g T Variable
- feature: String - . s
- selection: Boolea « | - feature: String
- a B Hes > 0. - varName: String
o 1 g 1 1
< Makes 4 | MainFeatureSelection
- feature: String
- grouping: String 1
- description: String B b
targetSystemVar 1 1 0.
- TargetSysName: String "
- feature: String 1§ & Wekae L Sl
- varName: String v -feature: Sting
-varText: String 0.* - diagramName: String
] FeatureWWebService ~Patic Sting
- type: String
- feature: String
- wsName: String
- wsMethod: String
i WebService
- - wsName: String
< Has A - waMethod: String
- wsMethodDescription: String
- Location: String
| ==
Figure 6-6 Entity Class Diagram

ParentFeature: Stores the parents of each feature to create the feature tree required in
the customization and consistency checking processes.

Diagram: Stores feature name, diagram name, and diagram path (storage location) of all
analysis, design, source code files, and testing procedures for the purpose of navigating
through the multiple-view model. Diagrams are categorized by type (analysis, design,

source code, and tests) in the type field.

146

FeatureWebService: Stores feature name, web service name, and related web service
methods to enable the invocation of web services in the SPLET prototype, for the
purpose of testing their behavior and their required input and output.

WebService: Stores all web service names, related web service methods, description of
each web service method, and their URL location in the Internet.

TargetSystemsFeature: Stores features and their selection status for each target
application.

TargetSystemVar: Stores features and values of related parameterized variables for all

target applications.

The following describes the two components of the SPL Feature Modeling subsystem:

Feature Editor and Web Service Editor.

6.2.1.1 Feature Editor Component

This component is used to create the SPL model. It provides the following facilities:
e Allows SPL engineers to create a feature tree and defines feature relations.
¢ Allows SPL engineers to create parameterized variables for each feature

e Allows SPL engineers to define mappings between features and related

specifications, designs, test procedures, and implementation components.

147

Figure 6-7 Feature Editor-main interface

The main user interface of the Feature Editor component in Figure 6-7 is decomposed

into several screen snapshots to describe each part of the main user interface.

148

The Feature Editor user interface of Figure 6-8 is used to create features and associate

features to their parents to produce a feature tree.

Figure 6-8 Feature Editor — feature creation

Figure 6-9 shows the sequence diagram for creating features in the Feature Editor

component.
;(l\ <<entity>> <<entity>>
$PL enghneer Feature Editor MainFeatureSelection ‘ParentFeature
Enter feature info
> | Store feature info
Enter parents info _ | Store related parents
J

_ Figure 6-9 Feature Creation

149

The following explains the process:
e SPL engineer enters feature name, type (kernel, optional, alternative), description,
and grouping name of alternative features.
e SPL engineer enters associated feature parents.
e The Feature Editor component stores entered information in the

MainFeatureSelection and ParentFeature tables of the SPL model database.

Features are created from top of the tree to bottom. The top level feature is the main
parent feature. Under the main feature, features under different levels of the hierarchy are
created and associated with related parent(s) to form the feature tree. From the design
model of Chapter 4, Figure 6-10 shows the feature tree used in the hotel system. In the
top level, the main feature forms the root of the tree. The other features may have one or
more parents associated with them. For example, “BlockCheckout” feature has

“Checkout” and “Blockreservation” features as its parents.

For alternative features, the feature grouping “Reserve” is used to group the mutually
exclusive alternative features “RoomReservation” and “ResidentialReservation”. In the
grouping field of Figure 6-8, the “Reserve” feature grouping is entered. The group name
of the next related alternative feature created with the Feature Editor can be selected from

the dropdown list of groupings.

150

-

A

i
il
A

[(]
i

i

l

Figure 6-10 Feature dependency tree

The Feature Editor user interface of Figure 6-11 is used to define mappings between
features and related specifications, designs, test procedures, and implementation

components.

Figure 6-11 Feature Editor — related diagrams

151

Figure 6-12 shows the sequence diagram for associating SPL artifacts to features in the

Feature Editor component.

e Feature Editor \

Enter links and

artifacrs

classification to SPL

-

<<entity>>
:Diagram

Store feature info

Figure 6-12 Storing related SPL artifacts

The following explains the process:

e SPL engineer enters links to associated SPL artifacts to each feature

(specifications, designs, source code files, test procedures), and selects the proper

classification of the artifact from the dropdown list of classification types.

e The Feature Editor component stores entered information in the Diagram table of

the SPL model database.

The Feature Editor user interface of Figure 6-13 is used to create parameterized variables

related to each feature. During customization, the values of parameterized variables are

entered using the Feature Selector component under the customization subsystem. The

customization file generator component extracts this information from the SPL model

database.

152

Figure 6-13 Feature Editor — parameterized variables

Figure 6-14 shows the sequence diagram for creating parameterized variables in the

Feature Editor component.

X

SPL engineer

Feature Editor

<<entity>>
:Variable

Enter variable names

Store Variable names

Figure 6-14 Creation of parameterized variable

The following explains the process:

e SPL engineer enters variable names to each parameterized feature.

e The Feature Editor component stores entered information in the variable table of

the SPL model database.

153

The Feature Editor user interface of Figure 6-15 is used to relate web services to each
feature. This information is used in the Feature Selector component under the
customization subsystem to enable the invocation of web services for the purpose of

testing their behavior and their required input and output.

Figure 6-15 Feature Editor - web services

Figure 6-16 shows the sequence diagram for associating related web services to a feature

using the Feature Editor component.

X

_ — _
SPLengoeer Feature Editor P <<entity>>

1

Request web s

service st Read web service list -
isplay fist < Retum list
Select web service

Store web service

Figure 6-16 Adding web services

154

The following explains the process:
e SPL engineer requests a web service list from the Feature Editor component.
e The Feature Editor component reads the web service list from the WebService
table.
e The web service list is returned to the Feature Editor component and displayed to
the user.
e SPL engineer selects feature related web services from the list.

e Selected web services are stored in the FeatureWebService table.

6.2.1.2 Web Service Editor

The Web Service Editor is part of the Feature Modeling subsystem. Figure 6-17 shows
the interface for this component. It is used to enter all needed web services related to the
SPL application. The information is stored in the WebService table of the SPL model
database. It is used in the Feature Edi‘tor component to select web services from this list.

It is also used by the Feature Selector component to invoke web service methods.

155

hitp:/locabhostHotelSye\LoginwSlogin asm2op=L oginlser

Figure 6-17 Web service editor

Figure 6-18 shows the sequence diagram for entering needed web services that are related

to the SPL application.
% Web Service <<entity>>
SPL engineer Editor WebService

Enter web service info

-

Store web service info

Figure 6-18 Adding web services

156

The following explains the process:
e SPL engineer enters web service information in the Web Service Editor
component.
e The Web Service Editor component stores entered information in the

WebService table of the SPL model database.

6.2.2 Customization subsystem:

This subsystem is used to customize target applications. It consists of three components:
Feature Selector, Consistency Checker, and customization file generator. The Feature
Selector and Consistency Checker components interact with the SPL model database for
selecting features, entering values for parameterized variables, and verifying selected
features. The customization file generator component generates the customization file
used by the dynamic client application to enable customization at run time. Figure 6-19

shows the subsystem and the interaction between the components and the databases.

157

SPL
model
Customization &
components)2
Feature selection &
parameterized variables

Verify feature e
selection customization file
Feature selection
&
Customization file Values of
Parameterized variables

Figure 6-19 Customization Subsystem in SPLET

The following describes the three components of the customization subsystem: Feature

Selector, Consistency Checker, and customization File Generator.

6.2.2.1 Feature Selector

This component is used to customize target applications and navigate through the feature
tree. Figure 6-20 shows the main user interface of the Feature Selector component. This

component provides the following facilities:
¢ Allows application engineers to select target application features.

e Allows application engineers to enter values of parameterized variables of

selected features.

e Allows application engineers to navigate through the SPL environment to:

158

- View feature selection.

- View specifications, analysis, design, and source code files related to
each feature.

- Invoke web service methods related to each feature for testing web

services behavior and their input and output.

Figure 6-20 Feature Selector main interface

159

Figure 6-21 shows the sequence diagram for customizing target applications.

. Scontty>s <<entity>>

Feature
JargetSystems | | .
Featiros TargetSystemVar

Consistency Ssentiy>» «m" > :fm)
Selaction Variokle Eealures

Figure 6-21 Feature Selector - Customization

The following explains the process:

Application engineer selects a feature to be customized.

Feature Selector component requests feature information from the
MainFeatureSelection table of the SPL model database.

Feature Selector component requests related parameterized variables from the
Variable table of the SPL model database.

Feature Selector component displays feature information and related
parameterized variables.

Application engineer requests from the Feature selector component to enable or

disable the selected feature.

160

e Feature Selector component requests from the Consistency Checker component
verification to enable or disable the selected feature.

e Consistency Checker component reads the MainFeatureSelection table and the
ParentFeature table.

e Consistency Checker component applies consistency checking rules to enabled or
disabled feature.

e Consistency Checker component displays a confirmation or rejection message to
application engineer.

e Application engineer enters the values of parameterized variables.

e Application engineer saves customization information in the
TargetSystemsFeatures table and the TargetSysVar table of the SPL model

database.

The Feature Selector user interface of Figure 6-22 is used to locate and display a feature
related artifacts (specifications, designs, source code files, etc.) from the SPL model. The
stored path and name are used to locate the artifacts. The selected artifact is displayed

using its original tool (Visio, Rational Rose, PowerPoint, MS Word, etc.).

161

GUIMap D:\HotelDesigns\Ver
Collaboration D:\HotelDesigns\Ver | .
Statelhart N-\HntelDesions\V

Figure 6-22 Feature Selector — diagrams

Figure 6-23 shows the sequence diagram for displaying feature related artifacts.

% Selecto <<entity>> <¢?nﬁty>>
Application Fedkus J :MainFeatureSelection :Diagram

|

Display info

Select artifact

x :

1

Figure 6-23 Display artifacts

162

The following explains the process:

Application engineer selects a feature to view its artifacts.

Feature Selector component requests feature information from the

MainFeatureSelection table of the SPL model database.

Feature Selector component requests related feature artifacts from the Diagram
table of the SPL model database.

Feature Selector component displays feature information and related feature
artifacts.

Application engineer selects a feature related artifact.

Feature Selector displays selected artifact in its original tool (Visio, Word, etc.).

The Feature Selector user interface of Figure 6-24 is used to invoke a feature related web

service method.

Figure 6-24 Feature Selector - related web services

163

Figure 6-25 shows the sequence diagram for invoking a web service method.

2 o e =
Application R :MainFeatureSelection :FeatureWebService

Select feature l

-

Request feature info

Y

Feature info

—

. Requestfeature related webservices |
. - o Feature related web services
¢ Displayinfo |

1

Seiectwebservéoe__

Display Web Service
invocation

Figure 6-25 Web Service Invocation

The following explains the process:

e Application engineer selects a feature to invoke its related web services.

e Feature Selector component requests feature information from the
MainFeatureSelection table of the SPL model database.

e Feature Selector component requests related feature web services from the
FeatureWebService table of the SPL model database.

e Feature Selector component displays feature information and related feature web
services.

e Application engineer selects a feature related web service.

e Feature Selector invokes the web service.

164

Figure 6-26 shows a sample web service method. The reserveRoom web service method
is shown with all required input using the standard input interface that is provided with

the NET framework.

reservationWws

Click ##32 for a complete list of operations.

reserveRoom

Test
To test the operation using the HTTP POST protocol, click the "Invoke' button.

pName:

pAddressi:

pAddress2:

pTel:

pCreditCardNo;

pExpirationDateStr:

pCreditType:

‘pResRoomType:

pArrivalDateStr:

pDayshNo:

pNumberOcc:

Figure 6-26 Web Service invocation - ReserveRoom

Figure 6-27 shows a sample SOAP request and response for the reserveRoom web

service method. This figure is displayed along with the input interface of Figure 6-26. It

165

describes the expected input and output types and location of the web service in

XML/SOAP format.

HTTP POST
The following is a sample HTTP POST r

tand r holders shown need to be replaced with actual values.

Figure 6-27 SOAP message

166

Figure 6-28 shows the results returned from the reserveRoom web service method. The
reservation number “1020” is returned in XML format. If the room reservation

transaction is not successful, an integer value of zero is returned instead.

<?aml version="1.0" encoding="utf-8" 7>
<int smins="http:/ ftempuri.org/">1020</int>

Figure 6-28 Results returned from roomReservation WS

6.2.2.2 Consistency Checker Component

This component is part of the Feature Selector component. It serves as a check for
ensuring that features selected for the target application are consistent with each other.
When a feature is selected using the “Update Selection” button of Figure 6-20, the
Consistency Checker is invoked to verify selection. If a selected feature causes a
violation to the SPL model, a warning message appears with proper explanation to the
reason why this feature can not be selected or deselected. The following explains the

consistency checking rules and action performed.
Consistency checking rules:

e Rule 1: A feature can not be deselected if it is a kernel feature.

Action: Feature selection is disabled.

167

Rule 2: Optional and alternative features can be selected or deselected if all of the
following consistency rules are satisfied.

Action: Based on rules 3 to 13.

Rule 3: An optional feature cannot be selected if parent feature is an bptional
feature and it is not selected.

Action: Message appears ("Feature can not be selected. Parent Feature must be
selected first").

Rule 4: An alternative feature cannot be selected if parent feature is an optional
feature and it is not selected.

Action: Message appears ("Feature can not be selected. Parent Feature must be
selected first").

Rule 5: An alternative feature can not be selected if parent feature is an
alternative feature and it is not selected.

Action: Message appears ("Feature can not be selected. Parent Feature must be
selected first").

Rule 6: An optional feature can not be selected if parent feature is an alternative
feature and it is not selected.

Action: Message appears ("Feature can not be selected. Parent Feature must be
selected first").

Rule 7: An optional feature can be selected if parent feature is kernel.

Action: Feature is selected.

Rule 8: An alternative feature can be selected if parent feature is kernel.

168

Action: Feature is selected and all of the other alternative features in the related
set are deselected.

e Rule 9: An optional feature can not be deselected if it has a selected dependent
feature.
Action: Message appears ("Feature cannot be deselected. Dependent Features
must be deselected first").

e Rule 10: An alternative feature cannot be deselected if it has a selected dependent
feature.
Action: Message appears ("Feature cannot be deselected. Dependent Features
must be deselected first").

¢ Rule 11: An alternative feature cannot be selected if one of the other alternatives
in the set of related alternatives is selected. Alternatives are mutually exclusive.
Action: Only one of the set of related alternative features is selected. The other

alternative features will be set to false.

6.2.2.3 Customization File Generator component

This component is responsible for generating a customization file automatically for each
target application. The customization file is required for the customization process of
client applications, described in Chapter 5 section 5.2, 5.4, and 5.5 (DCAC, DCAC-SC,
and SCAC patterns). The three customization methods depend on this file. This

component relies on the Feature Selector component, which sets feature selection status

169

to true/false and stores values of parameterized variables in the TargetSystemsFeatures

table and the TargetSystemVar table of the SPLmodel database.

Figure 6-29 shows the graphical user interface for this component.

Figure 6-29 Customization File Generator component

Figure 6-30 shows the entity class diagram for the customization file. It consists of the

following tables:
Feature: Stores all feature names and their selection status (Y/N).

Variable: Stores values of all parameterized variables grouped by feature name.

170

Feature Variable

- feature: String . | - feature: String
- selection: Boolean 1 Hes p» 0% varName: String

- varText: String

Figure 6-30 Entity Class Diagram - Customization File

Figure 6-31 shows the sequence diagram for generating a customization file for a target

application.
SPL feature model Customization file
[||| |
% Customization File <<entity>> <<entity>> I <<entity>> <<entity>>
Applcaon Generator :TargetSystemsFeature :TargetSystemVar :Feature :Variable
engineer |
Select target
a Request target application I
— Telied fedures o ™|
g Feature info l
Request target application|related variables info .
e Target application retated variables '
Request creation of I
customization ___ Store target application|related feature info >
Store target g; E variables info I s
I
l

Figure 6-31 Customization File Generation

The following explains the process of generating a customization file for a specific target

application:

e Application engineer selects a customized target application.

171

e Customization File Generator reads the related feature information of the selected
target application from the TargetSystemsFeature table of the SPL model
database.

e Customization File Generator reads the related parameterized variable
information of the selected target application from the TargetSystemVar table of
the SPL model database.

e Application engineer requests the creation of the customization file.

e Customization File Generator inserts feature names and their selection status of
selected target application into the Feature table of the customization file.

e Customization File Generator inserts parameterized variables information of

selected target application into the Variable table of the customization file.

6.2.3 Separation of concerns and source code integration subsystem

This subsystem is used to establish separation of concerns and integrate variable source
code with kernel source code. It consists of three components: Variable Source Code
Editor, Code Tracker, and Code Weaver. Figure 6-32 shows the subsystem and the
interaction between its components and related files. The following sections describe in

detail each component in the subsystem.

172

Separation of
concemns &
Integration
components

SPL kernel
- source files
L I

Figure 6-32 SPLET — Separation of Concerns & Code Weaving

6.2.3.1 Variable Source Code Editor Component

This component is used to relate optional and alternative source code to features for the
purpose of establishing separation of concerns between variable source code and kernel
source code. Each feature in the feature tree has a related variable source code file that is
created and manipulated internally using the SPLET prototype. Features that interact with
other features have separate variable files. The individual variable files are composed
automatically into a single variable source code file that is used by the code weaver
component to integrate variable source code with kernel source code according to the
customization methods, described in the DCAC-SC and SCAC patterns in Chapter 5. The
file structuring, manipulation, and the composition of variable source code files into one
variable file are done internally in SPLET. Users interact with the user friendly interfaces
to create all variable source code.

This component consists of three major functions:

173

o Single-feature source code generation: This function is used for relating variable
source code to a single feature. Each feature has one file that stores all related
variable source code. Each block of variable source code in this file is identified
by an insertion point name.

e Multi-feature source code generation: This function is used when a feature has to
interact with other features. Every set of interacting features has one file that
stores all related variable source code. Each block of variable source code in this
file is identified by an insertion point name.

e Composed variable file generation: This function is used to compose all
individual files into a single variable file. The code weaver component reads this

file in the integration process.

The following sections explain each function in detail.

6.2.3.1.1 Single feature source code generation

Figure 6-33 shows the graphical user interface used to create variable source code for

each feature.

174

FoonFeser
- .'-iﬁEAIUHEﬁva- servakon]
piivate void button_Clck{object sender, £ 1/ Insert your aspect code here
($START RoomResidentiall)l :

RoomAesesvalion! ic = new RoomAesesvalioni]) :
1c. Show()
$END RoomResidentiallll

}
private void button3_Clck{objct sander, €

{
) Fom.ActiveForm.Close{) ;

pivele void butond_Clck(obect sonder.€
Application Ext(] ;

$ENDFEATURE[R comReservation]

}
private void button2 Cick(object sender, €
$START BlockResButton

Figure 6-33 Variable Source Code Editor - Single Features

Figure 6-34 shows the sequence diagram for creating feature related variable source code.

[I

e P A T I I
/7% Variable Source Single Feature Variable
& Code Editor Source Code File

Kemel Source Code

Select feature and load
related kemel code Create a newsingle

Insert variable "
— caurce “'-—'-I Store variable code

poins ™| Add insertion points

T

Figure 6-34 Single Feature Variable Source Code File Creation

Y

175

The following explains the process:

SPL engineer selects a feature to add its variable source code.

Variable Source Code Editor component creates a new single feature variable
source code file or loads an existing file.

Variable Source Code Editor component creates a predefined template in the
single feature variable source code user interface with the appropriate SPLET
commands. SPLET commands are described in detail in Chapter 5 sections 5.4
and 5.5 (DCAC-SC and SCAC patterns). The following is a sample template for

BlockCheckin feature:

SFEATURE[BlockCheckin]
SSTART Insertion Point Name
// insert variable source code here

8END Insertion Point Name

SENDFEATURE[BlockCheckin]
The Insertion_Point_Name is replaced with the actual insertion name.
Variable source code is inserted after the $SSTART command line.
In the kernel source code, the insertion point name is inserted at the location
where the variable source code is expected to be merged in the integration

process.

176

e The code weaver component decides on which optional or alternative source code
is expected to be integrated with the kernel source code, described later in the

Code Weaver component.

6.2.3.1.2 Multi feature source code generation

Figure 6-35 shows the graphical user interface used to create variable source code for

each feature.

$START RoomResidentialll

}

?rivah void button3_Click{object sendex, Sy :
FormActiveFom.Close() ;

- .I ly H . I.. H H I- I
: MTUﬁEINTEMTDNﬁmﬂMWMM

P . ' START MeinReserveTite
l{xNate wvoud buttond_Chck{object sender, Sy : $IF FEATURE{RoomReservation]
N) i ! MainReUiTite ="M ain Room Reservabion’ .
) Apphcation Exdf) i SELSEIF FEATURE[ResidentialR eservation]
'. ManRell|Title = "M ain Residential Reservabion™ ;
?ivaha wvoid button2_Chck({object sender, Sy T

Figure 6-35 Variable Source Code Editor - Multi Features

177

Figure 6-36 shows the sequence diagram for creating multi features related variable

source code.
| | "
X [*
Variable Source Multi Feature Variable
SPL engineer Code Editor Source Code File Kemnel Source Code
Select feature and load _
related kemel code Create a new single
vari code
*%’ Store variable source code
Add insertion I
points > Add insertion points &

Figure 6-36 Multi Feature Variable Source Code File Editor

The process in figure 6-36 is the same as the single feature source code generation
process, described in section 6.2.3.1. However, the predefined template in the multi
feature variable source code user interface uses different SPLET commands. SPLET
commands are described in detail in Chapter 5 sections 5.4 and 5.5 (DCAC-SC and
SCAC patterns). The following is a sample template for RoomReservation and
ResidentialReservation features:
SFEATUREINTERACTION[RoomReservation, ResidentialReservation]
SSTART Insertion Point Name
// insert variable source code here

SEND Insertion_Point Name
SENDFEATUREINTERACTION[RoomReservation, ResidentialReservation]

178

6.2.3.1.3 Composed variable source code file generation

Figure 6-37 shows the graphical user interface used to create a composed source code
variable file from all the individual variable source code files. The generated variable
source code file is used by the Code Weaver component to integrate variable source code

with kernel source code.

Figure 6-37 Variable Source Code Editor - Composed Features

179

Figure 6-38 shows the sequence diagram for creating the variable source code file.

[[
f [
% Variable Source Single Feature Variable Multi Feature Variable Variable Source
$PL snginest Code Editor Source Code File Source Code File Code File
Request creation of > l
variable source code file Read variable source code
F— ineachfie ™
" Copy variable source code -
Read variable source code
in each file
Copy variable source code

Figure 6-38 Creation of Variable Source Code File

The following explains the process:

e SPL engineer requests from the Variable Source Code Editor component to
generate a variable source code file.

e Variable Source Code Editor component reads variable source code in each
Single Feature Variable Source Code File and copies the read variable source
code into the composed Variable Source Code File.

e Variable Source Code Editor component reads variable source code in each Multi
Feature Variable Source Code File and copies the read variable source code into
the composed Variable Source Code File.

e A composed variable source code file is generated.

180

6.2.3.2 Code Tracker

Insertion point names can grow large in number and need a facility to locate them in both
the variable files and their corresponding insertion point names in the kernel source code.
The Code Tracker component in Figure 6-39 is used for this purpose. The code Tracker
component can track insertion point names in two ways:

e Feature tracking: Tracks all insertion point names by feature name or interacting
features. The dropdown list of features contains all single feature names and multi
feature names. Multi feature names represent interacting features. They are
combined between two brackets. For example, RoomReservation feature and
ResidentialReservation feature are two interacting features that are created with
the Variable Source Code Editor component. The dropdown list shows these two
interacting features as:

[RoomReservation, ResidentialReservation]
e Insertion name tracking: Tracks a specific insertion point name in all kernel

source code files and shows its related feature or interacting features.

181

'_-;tFEATUﬁEm[ahd:Flmaﬁm}

Figure 6-39 Code Tracker

182

Feature tracking:
Figure 6-40 shows the sequence diagram for tracking feature related insertion points and

their location in the kernel source code files.

I [
A I
% Single Feature Variable Multi Feature Variable
—— Codn Trn L Source Code File Source Code File Kemsl Source Code
Select feature ,_L
Read feature refated i
" point names in eadr'?:?;n"
Read feature refated N
point names in each file e

Read feature refated insertion
point names in each

insertion point names and_

their locations ‘]’

Figure 6-40 Tracking of feature related insertion points

The following explains the process:

e SPL engineer selects a feature or a set of interacting features.

e Code Tracker component reads feature related insertion point names in the Single
Feature Variable Source Code file.

e Code Tracker component reads feature related insertion point names in the Multi
Feature Variable Source Code file.

e Code Tracker component reads feature related insertion point names in the kernel
source code files.

e Code Tracker component displays all feature related insertion point names.

183

e Code Tracker component displays all kernel source code files that contain each

insertion point name and the location (line number) of each insertion point in the

kernel source code file.

Insertion name tracking:

Figure 6-41 shows the sequence diagram for tracking a specific insertion point name in

the kernel source code files and its related feature or interacting features.

[!
L
% Single Feature Variable
Code Tracke
SPL engineer i d Source Code File U
Enter specific ion —|-
i Read Insertion point names i
point rame R~

I :
L
Multi Feature Variable JJ

Source Code File

Kemnel Source Code

Read i

rtion point names in

each file

Read i

¢ Dispiay related feature to
the insertion point name
and its locations

Figure 6-41 Tracking of specific insertion point name

The following explains the process:

e SPL engineer enters a specific interaction point name.

rtion point names in
each file »

e Code Tracker component reads the insertion point name in all Single Feature

Variable Source Code files.

¢ Code Tracker component reads the insertion point name in all Multi Feature

Variable Source Code files.

184

* Code Tracker component reads the insertion point name in all kernel source code
files.

e Code Tracker component displays the insertion point name related feature or
interacting features.

e Code Tracker component displays all kernel source code files that contain the

insertion point name and its location (line number) in the kernel source code files.

The tracked information is used to locate variable source code in their corresponding
variable source code files and kernel source code. This information helps users to make
necessary modifications and updates to the SPL application using the Variable Source

Code Editor component.

185

6.2.3.3 Code Weaver

The Code Weaver is built to support the integration process that is described in the
Dynamic Client Application Customization with Separation of Concerns (DCAC-SC)
and the Static Client Application Customization (SCAC) approaches in Chapter 5
sections 5.4 and 5.5. It is responsible for integrating kernel source code with optional and
alternative source code using the automatically composed variable source code file and
feature selection. Figure 6-42 shows the main user interface of the Code Weaver

component.

Figure 6-42 Code Weaver

186

For the dynamic approach of DCAC-SC, Figure 6-43 shows the overall integration
process. In this integration method, all optional and alternative source code from the
variable source code file is integrated with kernel source code. The integrated source
code is then compiled to produce a SPL application that can be dynamically customized
at run time. The integrated SPL application is customized after the code weaving and
compilation processes. The Feature Selector, Consistency Checker, and Customization
File Generator components under the Customization subsystem are used to customize

target applications, described in section 6.2.2.1, 6.2.2.2, and 6.2.2.3.

Kernel source code Variable source code

Class A Class B ClassC

A

SPL client
application
source code
4
. Executable
Compiler |—————— ———1 " oode

Figure 6-43 Dynamic integration

187

Figure 6-44 shows the sequence diagram for the integration process of kernel source code

with variable source code using the Code Weaver component with the DCAC-SC

approach.
- L I
/E); Dynamic Code Kemel Source Variable Source
. 4 de Fil
Applioslion Weaver Code File Co ile
Request code i
integration » Read insertion point names in,
each file

, Read source code blocks
4 refated fo insertion point names

Insert source code blocks
related to insertion point names

|

Figure 6-44 Code Weaving for DCAC-SC Method

The following explains the process:
e Application engineer requests integration of kernel source code with variable
source code using the dynamic method of integration (DCAC-SC method).
¢ Dynamic Code Weaver component reads insertion point names in kernel source
code files, which correspond to join points in Aspect Oriented Programming.
e When an insertion point is located in the kernel source code file, the dynamic
Code Weaver component reads the variable source code file to locate the

corresponding insertion point name,

188

e The variable source code block that is related to the found insertion point name is
integrated with kernel source code at the specified location in the kernel source

code.

For the static approach of SCAC, Figure 6-45 shows the overall integration process. In
this integration method, only selected optional and alternative feature related source code
blocks are integrated with kernel source code. Therefore, in order for the dynamic code
weaver component to perform the integration, the customization process of selecting
desired features is performed before the integration process. The Feature Selector,
Consistency Checker, and Customization File Generator components under the
Customization subsystem are used to generate a customization file of selected features to
be used by the dynamic code weaver to make decisions on which variable source code
blocks to include or ignore. After the integration process is complete, the integrated

source code is the compiled to produce an executable customized target application.

189

| Kemel source code Variable source code
1 l |
Class A Class B Class C
Variable
source -t
code file

Compiler » e

Figure 6-45 Static integration

Figure 6-46 shows the sequence diagram for the integration process of kernel source code

with variable source code.

[
I
jl\ Static Code Kemel Source Variable Source Customization Fi
Application Weaver Code File J_| Code File Ea
anginser
Request code o
Wegraton | | Read imerton point names i
Read source code blocks
related to insertion point names
A Verify feature >
Insert source code blocks
1o insertion point names

Figure 6-46 Code Weaving for SCAC Method

190

The following explains the process:

Application engineer requests integration of kernel source code with variable
source code using the static method of integration (SCAC method).

Static Code Weaver component reads insertion point names in kernel source code
files.

When an insertion point is located in the kernel source code file, the Code Weaver
reads the variable source code file to locate the corresponding insertion point
name.

Static Code Weaver component consults the customization file to verify feature
selection.

If the feature is selected, the Static Code Weaver integrates variable source code
block with kernel source code at the specified insertion location in the kernel
source code.

If the feature is not selected, the Static Code Weaver ignores the integration of

variable source code block with kernel source code.

Figure 6-47 shows two sample variable files that are generated by the Variable Source

Code Editor component. The Code Weaver component reads the generated variable file

and applies the selected integration method in the integration process.

191

Static feature file Dynamic feature file
$FEATUREINTERACTION [RoomReservation,ResidentialReservation]
$FEATUREINTERACTION[RoomReservation, ResidentiaiReservation]
$START MainReserveTltle
$START MainReserveTitle
$IF FEATURE[meRm] if{ roomRes =="y")
MainReUITitle = “Main Room Reservation” ; MainReUITitle = “Main Room Reservation” ;
$ELSEIF FEATU ulﬁ.nﬂall!nomﬂorﬂ
IlamReUITiue ain Residential Reservation” ; elseif (residRes == "y")
SENDIF MainReUITitle = “Main Residential Reservation” ;
$END MainReserveTitle
$END MainReserveTlitle
I SRR
$START RoomResidentialUl
$START RoomResidentialUl
H{ roomRes == *Y")
$iF FEATURE[RoomReservation] i Atternative feature
RoomR: tion! r¢c = new RoomR tonk) ; /f Display RoomReservationUl
rc.Show) ; rc = new RoomR ationi() |
rc.Show() ;
SELSEIF FEATURE[ResidentlalReservation] // Alternative feature }
Reaiﬁarli)aﬂemaﬁml rs = new ResidentialReservationk) ; else i residRes =="Y")
rs. Show(
H Display ResidentiaiReservationU
ResidentialReservation| rs = new Mmmﬂmmﬁ)rﬂj 4
$END RoomResidentialUl rs.Show() ;
SEl}D RoomResidentialul
SENDFEATUREINTERACTION[RoomR tion, ResidentiaiR $SENDFEATUREINTERACTION [RoomR 1, IReser]
e e T e L e e
SFEATURE[BlockReservation] i Optional Feature TURE[BlockReservation]
$START BlockResButton $START BlockResButton
Ilfcreate Block reservation button if (blockRes == “Y")
blockRes_button. visible = true;
Create block reservation button
$END BlocResButton y blockRes_button.visible = true;
$END BlocResButton
$START BlockResU|
biockReservation br = new blockReservation() ;
br.Show() ; $START BlockResUl
$END BlockResUl r(uoclcﬂes ==Y}
$SENDFEATURE[BlockReservation] b tion br = new vation() ;
br.Show() ; i
SEJ’D BlockResUl
SENDFEATURE[BlockReservation]

Figure 6-47 Samples of Variable File

6.2.4 Utility subsystem

The utility subsystem consists of the File Extractor component. It is used as a supporting

tool for retrieving analysis, designs, source code files, and test procedures for target

applications. Figure 6-48 shows the Utility subsystem.

192

SPL
model
A
Read links to artifacts
Uity - Selected analysis
—— - Selected design
| Exbracttarget Sys.) L - - Selected components
R - Selected Test procedures

Figure 6-48 SPLET - Utility

Figure 6-49 shows the main user interface of the File Extractor component.

Figure 6-49 File Extractor utility

193

File extraction is based on the Feature Editor and Feature Selector components. The
Feature Editor allows users to enter links to files/diagrams that are related to each feature
in the Diagram table of the SPL model database. Files are categorized in the Diagram
table as: specifications, analysis, design, source code, tests, and other. The File Extractor
utility creates sub-directories in the destination path for each category type. It then
copies files of checked category types of selected target application in their related sub-
directories. The File Extractor utility consults the TargetSystemsFeature table in the SPL
model database to verify feature selection. Only files related to selected features of a

target application are copied into their corresponding directory.

6.3 Validation

This research is validated through two case studies using a product line independent

proof-of-concept prototype (SPLET). The two case studies apply the software product

line service-oriented development approach to the design, development and

customization of the proposed architecture and implementation. The two case studies are:
e Hotel Product Line

e Radio Frequency Management Product Line

6.3.1 Validation process

a) Developed a product line proof-of-concept prototype to (SPLET), which supports the
design, development, and customization of software product lines that are based on

web services. The SPLET prototype covers the life cycle of software product lines

194

from the SPL engineering phase to the application engineering phase. The SPLET

prototype was used as follow:

In the SPL engineering phase, SPLET was used in the two case studies to
create a SPL feature model and associate web service components and
artifacts (specifications, design models, test files, source code) to their related
features.

In the application engineering phase, SPLET was used in the two case studies
to select desired features, run consistency checking rules, and customize target
applications using all of the three development approaches.

The two case studies applied the proposed methods of separation of concerns
and source code integration of variable source code and kernel source code

according to the DCAC-SC and SCAC patterns.

b) Designed the two SPL case studies according to the proposed design approach. The

design included the following multiple-view models:

Use case modeling: Captures the overall software product line requirements.
Feature modeling: A feature dependency model was derived from the use case
model. The feature model was used to depict the kernel, optional, and
alternative features in the SPL application.

Entity class modeling: was used to depict the needed input when developing

web services.

195

User interface navigation modeling: Shows the navigation between kernel,
optional, and alternative user interface objects.

Interaction modeling: Describes the interaction between the user interfaces
and web services.

Activity modeling: Describes the workflow of each user interface object.
Software architecture modeling: Identifies the required web services and their
input and output.

Component interface modeling: Objects from the interaction model are
designed as components in terms of their interfaces and interconnections. User
interface components communicate with web services and each other through

ports, which support provided and/or required interfaces

¢) Implemented three prototypes for each case study to validate the three development

approaches described in this research. The two case studies were implemented

according to:

Dynamic client application customization (DCAC)
Dynamic client application customization with separation of concerns
(DCAC-SC).

Static client application customization with separation of concerns (SCAC).

d) Derived target applications from the SPL architecture and components. Each SPL

implementation of the two case studies was customized to derive two target

applications.

196

e) Each derived target application was tested using conventional functional testing

methods to verify the correct customization and execution of derived applications.

6.4 Summary

This chapter has described the Software Product Line Environment prototype (SPLET) as
a proof of concept for this research. SPLET is designed to be a product line independent
prototype that covers the product line life cycle, which includes the software product line
engineering phase and the application engineering phase (SPL customization). SPLET is
based on dividing a SPL application into features that are categorized as kernel, optional,
and alternative. Features are the main driver for organizing SPL components and
customizing target applications. The SPLET prototype helps in visualizing the overall
SPL system by providing a flexible navigation facility through the SPL model, and
provides the needed facilities to customize target applications. It consists of four
subsystems: software product line environment, customization, separation of concerns,

and supporting utility.

http://www.tcpdf.org

‘e o* inghiall)l

4 DARALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Software Product Line Engineering Based on Web Services 1Ulgusll
Saleh, Mazen M. Aquil OV RUI YN

Gomaa, Hassan(Super.) to>l aslio

2005 HENVWN PR

a9 uS19,49 ‘8990

618453 :MD »3,

duzol> Jilw, JESYEINIFTY

English :aelll

ol,9:8> allw, ragodell as,all

George Mason University asol=l

Volgenau School of Engineering raudsUl

a,S5,0V daxiodl WLVl radgall

Dissertations 1Wlogleall aclgd

Olowll awiis (wlogleoll audi oYl «Oliseo)l :&aolgo
https://search.mandumah.com/Record/618453 ol

: ‘ bgaxo Seaxll geox Asghiiall > 2019 ©
Aoz 3lall 03 dclb of Juoms cliSoy albgimo il Sgi> gao Ol lale il Boi> wlol g0 @dsall Sl (sle by asbio s3lall 010
s ol sl B> ool oo b ousas 093 (crigsSIVl syl ol iVl gdlge Jxo) aliwg oSl ac sl ol Jugmil ol ol giovs dasd naseill

ol Lalu Zyl_ﬂbl

.aoglaioll

www.manharaa.com

https://search.mandumah.com/Record/618453

197

7. CONTRIBUTIONS AND FUTURE RESEARCH

7.1 Introduction

This dissertation has developed an approach for designing a Software Product Line (SPL)
based on web services. It addressed the unique issues of using the web service technology
in the designing approach. This research also described three software development
environments to develop the proposed product line design and support the automatic
customization of SPL architecture and components. The three approaches followed the
same design architecture, but differed in how separation of concerns is used for software
development and customization. Each development approach was implemented with
specific consideration to one of the customization methods described in this research. The
design, development, and customization methods were supported by a product line
independent customization prototype to help developers and application engineers to
create a customizable SPL application and generate target applications automatically

from the reusable service-oriented product line.

7.2 Research Contribution

This research has focused in designing, developing, and customizing software product
lines that are based on web services. A proof-of-concept prototype was developed to

cover the software product line life cycle from the SPL engineering phase to the

198

application engineering phase. The main contributions of this research effort are as

follows:

a) This research effort has developed a multiple-view modeling approach, which
extends the Product Line UML-based Software Engineering environment (PLUS) to
address the unique issues related to web services. The multiple-view model defines
the different characteristics of a service-oriented software family, including the
commonality and variability among the members of the family. In the design
approach, several multiple-view models are created specifically for a software
product line service-oriented architecture, including user interface navigation
modeling, interaction modeling, activity modeling, software architecture modeling,

and component interface modeling.

b) A major contribution of this research effort is the design of the three software
development environments to support the automatic customization of SPL service-
oriented architecture and components. The three approaches are:

e Dynamic client application customization (DCAC): This approach provides an
automated customization method of target applications at system run time.
Product lines are automatically customized by selecting desired features and
entering values of parameterized variables to satisfy the execution of a
specific target application. Selected features and parameters are stored in a
customization file that is used by the target application objects to customize

the client application user interfaces and their workflows at system run time.

199

The benefits of reuse can be achieved by deriving many target applications
from the customizable SPL application without the need to modify any of the
source code.

Dynamic client application customization with separation of concerns
(DCAC-SC): The second development approach is an extension to the first
method (DCAC) to include separation of concerns, where optional and
alternative source code is separated from kernel source code into a variable
source code file. During source code integration, the variable source code file
is used to integrate kernel source code with optional and alternative source
code. The result of the integration process is a combined set of source code for
the entire software product line, including a// optional and alternative source
code. The source code integration process and compilation are performed only
once to generate a customizable SPL application at system run time. Target
applications will rely on the dynamic client application customization, which

is identical to that produced by the first approach (DCAC).

Separation of concerns is used to reduce complexity of developing software
prbduct lines and improve system maintenance by uniquely identifying
variable source code and kernel source code. Variable source code can be
manipulated separately within the SPL environment then automatically

integrated with kernel source code.

200

Static customization of client application with separation of concerns (SCAC):
This approach is based on static customization of application objects at system
derivation time. Client objects are customized by integrating kernel source
code with only the selected optional and alternative source code from the
variable source code file. With this approach, there is no customization at
system run time. Using the static customization approach, the target
application’s source code is derived automatically from the SPL architecture
and components. This approach is suitable for SPL applications that require

distribution of only needed target application source code.

c) Another major contribution of this research is the development of a product line

independent proof-of-concept prototype (SPLET), which supports the design,

development, and customization of sofiware product lines that are based on web

services. SPLET covers the entire life cycle of software product lines from the SPL

engineering phase to the application engineering phase.

In the SPL engineering phase, SPLET enables SPL engineers to create a SPL
feature model and associates web service components and artifacts
(specifications, design models, test files, source code) to their related features.
In the application engineering phase, SPLET provides facilities that enables
application engineers to select desired features, run consistency checking
rules, and customize target applications using one of the three development

approaches.

201

e Provide the necessary tools to establish separation of concerns between
variable source code and kernel source code with the facility to integrate them
according to one of the integration methods described in the DCAC-SC and

SCAC patterns.

d) Another contribution of this research is the development of a feature-based

description language for separation of concerns. This language is used to identify
optional and alternative source code for creating the variable source code file, which
is used by the code weaver component in the separation of concerns subsystem of the
SPLET prototype to integrate kernel source code with variable source code according

to the dynamic integration method of DCAC-SC or the static method of SCAC.

Another contribution of this research is the development of a code integration engine
(code weaver component in SPLT) that is able to interpret the developed feature-
based description language to integrate kernel source code with variable source code

according to the dynamic or static customization methods.

202

7.3 Future Research

This section describes possible future research in the area of software product line based

on web services.

7.3.1 Testing of software product lines

This research has developed a method for integrating variable source code with kernel
source code to produce a SPL application that is configured for dynamic customization at
run time or a target application that is customized statically at source code integration
time. There is a need to generate feature related test procedures to verify the integration

and customization of target applications.

7.3.2 Transaction of web services using customizable workflows

This research focused on designing, developing, and customizing web service-based SPL
applications. A possible future work in this area can be conducted to ensure that
customizable workflows produce a successful business transaction, especially keeping
track of transactions that require different inputs to and outputs from several loosely-

coupled web service components.

7.3.3 Performance of SPL applications based on web services

This research has introduced three development approaches for software product lines
based on web services. Performance issues were not addressed in this research. A
possible future work can be pursued to measure performance level and reliability of using

web services in a customizable service-oriented architecture. Also, Performance

203

measurement and reliability of the Internet usage of web services can be compared with

other component-based applications using CORBA or DCOM middleware.

7.3.4 Evolution of SPL applications based on web services

The issue of evolution of SPLs based on web services is not addressed in this research
effort. A study can be conducted to investigate the different possibilities to evolve the

customizable SPL system with minimum change to the original source code.

7.4 Summary

This dissertation has focused on designing, developing, and customizing web service-
based SPL applications. This research addressed the unique issues of using web services
in the designing approach. It also described three different development approaches to
develop the proposed product line design. A domain independent proof-of-concept
prototype was developed to support the ideas presented in this research. The design,
development, and customization approaches were applied to two case studies: Hotel
System and Radio Frequency Management System to validate this research. The

contributions of this research effort were described in this chapter.

http://www.tcpdf.org

‘e o* inghiall)l

4 DARALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Software Product Line Engineering Based on Web Services 1Ulgusll
Saleh, Mazen M. Aquil W RUI YN

Gomaa, Hassan(Super.) to> aslio

2005 HENVWN PR

bia>)9 uS19,49 ‘8990

618453 :MD »3,

duzol> Jilw, JESYEINIFTY

English :aelll

ol,9:8> allw, ragodell as,all

George Mason University asol=l

Volgenau School of Engineering raudsUl

a,S5,0V daxiodl WLVl radgall

Dissertations 1Wlogleoll aclgd

Olowll awiis (wlogleoll audi oYl «Oliseo)l :&aolgo
https://search.mandumah.com/Record/618453 ol

: ‘ albgaxo Sgaxll gua> Aoghiiall l> 2019 ©
Aoz 3loll 038 aclb gl Jpoxs iy abgine ,aiidl Sgis gea 0l lole (il Joi> lol go gdgall Syl (sle el aslio d3lall 0in
s ol sl Bga> ol o wshas aurai Lgs (nigsSOVl syl ol oVl gdlge Jin) @luaws oSl e sl gl Jogmdl ol ol grovs wosd (sl

ol Lalu Zyl_ﬂbl

aoglaioll

www.manharaa.com

https://search.mandumah.com/Record/618453

v

TABLE OF CONTENTS

Page
ABSTRACT ...cocoicivaniisisisssssiscasnssrerssisssns o). 4 |

1. INTRODUCTION

1.1 BACKGIOUNA............oviciiictcect et es et s s esse s s s snsesessenes 1
1.2 Research Problem and Approach.... 2
1.3 Importance and Rationale of This Research R AR i
1.4 Terminology ctrasssassastensssessenssasassussasesasssstssansassnnsaschessrasnsustasasansnss s s nssassnsasansssass 3
5
6

LS OREHIRHON i R G i R e s s

2. RELATED WORK

2.1 HHOICHONt cnmsnserssssrensannessdsinemmassismsanernasshstadenit sepi A GRS TR ST A G 6
2.2 Software Product Liescccmmnisinssissinsiivisisissssssasssamiass 6
2.3 Evolutionary Software Product Line Engineering Process..............cccccovvrevvinviennnn 7
2.4 Multiple-View Models of Software Product Lines................cccoovuevromucercivnruccrncicne. 8
2.4.1 Use Case Model for Software Product Linesc..coooeiieiiiiiiiieiincee, 9
2.4.2. Feature Analysis for Software Product Lines................cccoooooiiiiiiciii. 9
2.4.3 Static Model for Software Product Lines..............cccooooiiiiiiicinciiiiicne 10
2.4.4 Collaboration Model for Software Product Linescccoccoeevcncncl 11
2.5 Other Software Product Line Engineering Methodsccccooveiiiciiniiinnne, 12
2.5.1 Feature-Oriented Domain Analysis (FODA)cccccoviiiicniiviiciiicinens 12
2.5.2 Reuse-driven Software Engineering Method (RSEB)ccccccccie. 13
LS. FRAST censsnrssornermrasnmssassasiasanmssssnsapemssnssnorstansanadosssshingansonsssssmoasenssnsnssrasss 13
e 1 14
2.5.5 Knowledge-Based Requirement Elicitation Tool (KBRET).......................... 14
2.5.6 Web-Based Software Product Linesc.ccoceviiiiiicnniiiciiniicciceeennes 15
2.6 Component-Based Software Engineering s e T
2.7 Web Services... o e s ok R e e AR
2.7.1 Advantages of Web Semces ... 20
2.7.2 Disadvatifages of Web S&tVices.........ummmnmmannsmansasi 21
2.7.3 Service-Oriented ArChiteCture..............c.ooevveirieeeiiiirececceee e 21
2.8 Aspect-Oriented Programming................coocoooeoeremrecensicceeiesinsinncsesesessissscssonssscsssssssnnenss 22
2.9 Pramit TOOIORY..ccuncusivuscisssismsisssmmsnssisasssovststsnie s e s s NS 058 24
210 SUIMIMATY ..o eesses e ssss st esse s b s sassaseseestsssssasnsssssnsssssssesassassaes 26

3. PROBLEM STATEMENT AND RESEARCH APPROACH............ 27
3.1 INEOQUOHION. ...ttt ssbes s sss s sssss s 27
3.2 Problem Statement ... e s s B
3.3 Research Approach v 28
3.4 Design Method for Soﬂware Product Llne Serwce—Onented Arch1tecture .30
3.5 Developmeiit ERVITORIIEIISo uimmumismsssssisiiasimssississhssssisissisiitasisis v 31
3.6 Proof-of-oncept Development EnvIironment.................ccoveoveveeeeereueceereuscmseeneseesiconnnee. 3%
3.7 Validation... . sk R T
3.8 Comparison w1th Other Approaches .. 38

3.8.1 Comparison with Other Software Architectures and Product Line Research..38
3.8.2 Comparison with Development Approaches and Toolsc.c...... 42
F D BN . ..o cnvusepninisives i s s s S i SR A SRR A i i 45

4. A DESIGN METHOD FOR SOFTWARE PRODUCT LINES

BASED ON WEB SERVICES - 46
4.1 Introduction.... - somsermsesersnsssnses A SRS D
4.2 Design Architecture of SPL Engmeenng Phase sl

4.2.1 Use Case Modeling...........cccooviiiiiiiiiiieiececce e 49
422 Peattte MIOHBINE i sici e isiibsiarsnnrs v A S A s 32
4.2.3 User Interface Navigation Modeling...........co..nsmsimssiasitimsis 53
4.2.4 Interaction Modeling...............cccoooiiiiiiiiiiiiiiiiicee s 56
4.2.5 Aetivity Moot . .c.usiunansnsonussmssmsminmsn s 58
4.2.:6 Software Architecture Modeling: ... 61
4.2.7 Attributes of Entity CIasses...............c.ccoeievevieiieieiieeroieiseseee e 64
4.2.8 Design of Component Interfacesccccocvieiiiiiiniiiciiiiiiiciicciccns 64
B SUMIIUAEN oic0s oo oussviossisaioins oo i e S O R S A A 67

5. DEVELOPMENT APPROACHES FOR PRODUCT LINE _

CUSTOMIZATION AND SEPARATION OF CONCERNS................. 68
5.1 Introduction.... TR iiiviisse OB
5.2 Dynamic Customlzatlon of Cllent Apphcatlon s IO

5.2.1 Development of DCAC Pattern.............cccocoiiieieinieeeiicr e, 82
5.2:2 Adviitages of DCAC ApProatht; ..o ansunmsisnssimiisa i mmasi et 91
5.2.3 Disadvantages of DCAC Approach:...........ccumssmmammvsssssessmvas 92

5.3 Introduction to the Customization Approaches Based on Separation of Concerns. 93
5.4 Development of Dynamic Customization of Client Application with Separation of

Concems.............. SRRSO SRR . .
54.1 Development of DCAC SC Pattem ... 103
5.4.2 Advantages and Disadvantages of DCAC-SC Approach:cccoeee 111

5.5 Development of Static Customization of Client Application (SCAC) with

Separation Of COMCEIMNS...............c.ooeeuiirieieeeeeee ettt ses s 112
5.5.1 Development of SCAC PAUSI. ..ci.inisiasuaisiisiasisissesinsissasies 123

252 Advantages of BEAC SPPI0AOIE <o asssmmmmsamamrmsssssmmpmmm oy 133

5.5.3 Disadvantages of SCAC Approach .. 133
5.6 Comparison of Customization Methodsccccccooerverrnrionrecsrieriiesieeseesienienns 134
5.7 Usage of Devel()pment Approaches iSRRI
5.8 Summary 136
6. SOFTWARE PRODUCT LINE ENVIRONMENT PROTOTYPE.137
6.1 INETOAUCHION.........ooovvieieiiciceieie st ettt esseneneaes 137
6.2 Software Product Line Environment Prototype (SPLET)..........c.ccccccooccvuuecurcnincnecc. 138
6.2.1 Featurs Modeling: SubBYBIBINE ... sass s 143
6.2.2 Customization SUbSYSIEM:c..ccoiiiiiriiiriieeeiee e ereee e cere e eee e 156
6.2.3 Separation of Concerns and Source Code Integration Subsystem................. 171
O 24 LY SUbRTEIOI. oot b s s s s G s SR SRS 191
6.3 Validation.........c.cooouiiriiiecieecceeeee et 193
0.3, 1 Validation PIOCEES . vecsiessvoiini st s s s S s i s sissss 193
O SUUTNURDY oo ittt o 555 8 R SR AR 196
7. CONTRIBUTIONS AND FUTURE RESEARCH 197
7.1 Introduction.... SRS s Rwiewessssacicesss AT
7.2 Research Contnbutlon ceeeaeeee e e s e s s e s e s s e ssessessnasssessassssssssnsiesssnnsssansenss 197
T3 Pl BRI .ot i A A S R S S B 202
7.3.1 Testing of SORWAre Product LINESc.cccoeerivrinieninressunsnnesssssessssssnesns 202
7.3.2 Transaction of Web Services Using Customizable Workflows 202
7.3.3 Performance of SPL Applications Based on Web Services.......................... 202
7.3.4 Evolution of SPL Applications Based on Web Servicesc....... 203
T4 SUIMMATYooooeeeeneeeeeeee et eeeee e esee e et sneesenseesaeraeenaeseeneenseeeeseensenseaneasansnen 203
APPENDIX A: RADIO FREQUENCY MANAGEMENT SYSTEM: A
CASE STUDY 211
U TOBPOIIORION. .ccicicnaimscomaiesos s s sdtims i oA A4 A S 211

A2 Validation of This ReSearch.............o...ccovvureeercoreerreieeiececeeiececeeseeeeseesecnscsneseenees 212
A.3 Multiple-View Design ArChfECture...............cc..ouicemsiimiinisisssscasisssasisiisssssssansssnssssesss 212

BRIl T R NI NIRRT N S R SRR B S BSOS SRR A RS 213
A 3.2 Feature Modelingccoveviioiiiiieiiieee et e 216
A 3.3 User Interface Interaction Modelingccccoooiiiiiiiiiiiiiniiiiiciie 219
N XD 1 T ORISR 221
A.3.5 Web Services MOdelingc.oooueiviiiiiiiiiieiie e 236
A.A. BPL DOVSIGIISHEovivmmmmsimssine s s s o s s s s s s e st 237
A.4.1 Dynamic Customization of Client Application (DCAC) Approach............. 238
A.4.2 Dynamic Customization of Client Application with Separation of Concerns
(DCALC-SCY APPLOACH........cocciiiiiviiinivnnioniimmisiissasssssomssimss s s sssas s savaaiis 242
A 4.3 Static Customization of Client Application (SCAC) Approach................... 248

AAA-SUNIBIT. i R S A A R 252

vii

APPENDIX B: DEVELOPMENT ENVIRONMENT PATTERNS.....253

B MBI ot i s s s 253
B.2 Dynamic Cient Application Customization Pattern ... i .. 254
B.3 Dynamic Client Application Customization with Separatlon of Concerns Pattem

e .. 261
B4 Statlc Cllent Appllcatlon Customlzatnon Pattem IR, |

viil

LIST OF FIGURES

Page
Figure 2-1 Evolutionary Software Product Line Engineering Processccccc.c...... 8
Figure 2-2 Component-Based Design Pattern [Bachmann00]cccooociiiiiiiinnn. 17
Figure 2-3 Service-Oriented Architecture [Irek03]...........ccoiiiiiiiiiiiiiicccee 22
Figure 2-4 Aspect-Oriented Programming Architecture [Anastasopoulos01]..............23
Figure 2-5 Example of an x-frame hierarchy [ZhangO3b]cccccooooiiiiiiiinins 25
Fignire 3-1 SPLET CODPODBIER ..;.5cch o iinrmmms iavatos s b s ot eiessiiassd o s s sbssbsueisy 36
Figure 4-1 Evolutionary Software Product Line Engineering Processc.cccoc.... 46
Figure 4-2 Use Case Diagram.... SN O - | |
Figure 4-3 Feature Dependency Model .. 53
Figure 4-4 User Interface Navigation Model................c.ccooiiiiiiiiiniiiiiiinicccicniene 35
Figure 4-5 GUI -RoomReservation Ulcocoovimiiiieiinneiieie e enceeees 56
Figure 4-6 Collaboration Diagram — Reserve single room.. L TR .7
Figure 4-7 Expanded Collaboration Diagram — Reserve smgle TOOM ..ovvinrieiiieeeanne 58
Figure 4-8 Activity Diagram— Main ReServationoooeerieeieiooieioneieeiceaanne 59
Figure 4-9 Activity Diagram — Overall Room Reservation Ul ..., 60
Figure 4-10 Activity Diagram—Reserve ROOMcccooeiiioceiniiiciiiiieiciicccsicceees 61
Figure 4-11 Example of Web Services Grouping............c.ccoovivveuccvniiicicicieciccenes 62
Figure 4-12 Sample Input/Output for ReserveRoomWS ... 63
Figure 4-13 Sample Entity Attributes for ReserveRoomWS ... 64
Figure 4-14 Example of ports and connectors - RoomReservation Feature.................... 65
Figure 4-15 Example of Ports, Provided, and Required Interfaces.................................. 66
Figure 4-16 Example of Port Interfaces Design.............ccoeeeieniniiiniiniieiiiiiiiecce e 67
Figure 5-1 Conceptual Overview of DCAC Approach ..o, 71
Figure 5-2 Dynamic Customization Workflows (DCAC) Pattern...............cc.cccceeeennnn. 81
Figure 5-3 Activity Diagram - Main Reservation UL...............cccoocoeiiiiiiiiiiieecee 82
Figure 5-4 Customization phase - Main Reservation UlL.................c.oociinn 84
Figure 5-5 Activity Diagram — RoomReservation UlL..............cccocooiviiiiiiininin. 87
Figure 5-6 Collaboration Diagram — ROOMRESErvationcccceeveeiereuereereecenennn 89
Figure 5-7 Implementation - RoomReservation Ulccocoiiiiiiiiiiiiiicccice 89
Figure 5-8 Conceptual Overview of DCAC-SC Approach...........ccccoeoiiiiiiiiiiinnnn. 97

Figure 5-9 Dynamic Client Application Customization with Separation of Concerns
PAHCIN.....ocoronooinnssonienssionnnsmsasnsommossronnserEIntBs LA R RS ABT seESoRRa s 103
Figure 5-10 Activity Diagram - Main Reservation UL................cccocoiiiiinnncicine. 104
Figure 5-11 MainReservation - Graphical User Interface................cccoocooveiiiiiininnnn 105

Figure 5-12 Implementation - Main Reservation UlL..............cccccoiiiiiiiiiiiiiinnnnn, 106

ix

Figure 5-13 Implementation - Main Reservation ULccccooiiiiiiiiiecciicee e 108
Figure 5-14 MainReservation Ul - Insertion Points List.................cccovivieeiieiicineeee, 110
Figure 5-15 Conceptual overview of SCAC approach...................ccocoooiiiiiiiiiiieen. 113
Figure 5-16 Static Client Application Customization (SCAC) Pattern......................... 122
Figure 5-17 Activity Diagram - Main Reservation Ul..............ccoccooviiiiiniininiecnnn. 123
Figure 5-18 MainReservation - Graphical User Interface..............c.ccooccoviniiiiinnnnn. 124
Figure 5-19 Implementation - Main Reservation UL................cccoverviiiiiiiiiinicrieenee 126
Figure 5-20 Implementation - Main Reservation UlL............c.c.ocooiiiiiiiinicinccninn, 129

Figure 5-21 Implementation - Main Reservation UI with RoomReservation Feature.... 130
Figure 5-22 Implementation - Main Reservation UI with ResidentialReservation Feature

.. 131
Figure 6-1 Evolutionary Software Product Line Engineering Process 137
Figure 6-2 SPLET COMPONENES...............cooovvieieiiiiieiie e eisceseeseeseanieeaesaee e siesanesens 141
Figure 6-3 Detailed Description of SPLETouiiiinsisssdosiisssisiesisssisiiosis 142
Figonre G- SPLIET = IR SC000K. .o ccivaimsivssiissiisnssassinss s s sssets s sas s o 143
Figure 6-5 Feature Modeling Subsystem...............ccccooiriiieiiiiicncceceecc e 144
Figure 6-6 Entity Class DIagramcccoiviiiiieiiiieiie e ccieesee e sn e siae e 145
Figure 6-7 Feature Editor-Main Interfacecccccoooiiiiiiiici e 147
Figure 6-8 Feature Editor — Feature Creation.................cccveeveeeierevrieiiiesieeeeeveeieaneenns 148
Figtite 6-9 Featiie CHOBHON. ... cocomimvinmmsiimiseiasias s s s s sr s osiss 148
Figure 6-10 Featurs Dependency Tres.........oaosssmimmsmss s i 150
Figure 6-11 Feature Editor — Related Diagramscccocoovouiiiiiiiiiiiniiciiicicece 150
Figure 6-12 Storing Related SPL Artifacts..................cc.oooviivieiiiiiiiiieeiccccee 151
Figure 6-13 Feature Editor — Parameterized Variables...................ccocoooviiiiiinnnnne. 152
Figure 6-14 Creation of Parameterized Variables................c.cccoovieiiiiiieriinicieccenenn, 152
Figure 6-15 Feature Editor - Web Servicescccooiivieoieiciiecieciireecee e 153
Figure 6-16 Adding Web ServiCes............c.c.ooviiiieiieiiiciceiieie e 153
Figure 6-17 Web Service EdItOrocoiiviiiiieiie e 155
Fipiite 6-18 Adaing Wieb SSIVISEE.ccuivnwnsmsismsismsmsssvin i o wmosivssss 155
Figure 6-19 Customization Subsystem in SPLETcccccoiiiiiiiiiiiicne, 157
Figure 6-20 Feature Selector - Main Interface.................cccoocooiiiiiiiiiiiiiiiccceecee, 158
Figure 6-21 Feature Selector - Customization....................c.ocooveeeeeeenienieieeeeesieeeeenes 159
Figure 6-22 Feature Selector — DIiagrams..............cccooueveeirerciniiineieecceisiceiecec s 161
Figure 6-23 Display ATHEREES ... oo s s s eissesise 161
Figure 6-24 Feature Selector - Related Web Servicesccooooiiiiiiiiiiicii 162
Figure 6-25 Web Service INVOCAtON.ccoovevieiiieieeieeieeereiei et 163
Figure 6-26 Web Service invocation - ReserveRoomocoeeieeiieiiieniiciiicce, 164
B0 627 SIVAP NEBBSREE ...ocosianianssmins v imss s s i s s s AT RS TS0 165
Figure 6-28 Results Returned from roomReservation WS..............ccooviiiiiinicnnn. 166
Figure 6-29 Customization File - Generator Component.................c.ccoooiiiinin 169
Figure 6-30 Entity Class Diagram - Customization File.............c.cccoiiiinni, 170
Figure 6-31 Customization File Generationoocoooieriiiiinienreceecniiccee e 170
Figure 6-32 SPLET — Separation of Concerns & Code Weaving.................c.cccceeneene. 172

Figure 6-33 Variable Source Code Editor - Single Features...............cccccoovvvniiiinnnne. 174

Figure 6-34 Single Feature Variable Source Code File Creationcccccooeue. 174
Figure 6-35 Variable Source Code Editor - Multi Featuresc....cccccveeeeennnnn, 176
Figure 6-36 Multi Feature Variable Source Code File Editor.............c...cocvvevveenennnn... 177
Figure 6-37 Variable Source Code Editor - Composed Features..............cccocceevenennne. 178
Figure 6-38 Creation of Variable Source Code Filecccccoiiienininiicecccee 179
Figure 6-39 Code TTACKETcc.oveeieeeeeee oo e e e s e e e e e e neeeenaeennes 181
Figure 6-40 Tracking of Feature Related Insertion Pointsccccoooieiiiicnnee. 182
Figure 6-41 Tracking of Specific Insertion Point Namecc.ccccooviviiiiiininn. 183
Figure 6-42 Code WEAVET...............c.coioviiiiiiiiieeeiisiiesieseesessseee s seesse s s essenescneensenas 185
Figure 6-43 Dynamic IMEGration...........uiuimaiasasiisssisiosississssisssisissisios 186
Figure 6-44 Code Weaving for DCAC-SC Method..............ccoocoooiiiiiiviiiiiiicicceee 187
Figure 6-45 Static INtegrationccouerereeeinieiiieieeee e cssecesecnseinans 189
Figure 6-46 Code Weaving for SCAC Methodc.ocooeiiiiiiiciiniiiccicieca 189
Figure 6-47 Samples of Variable Filec.cccoooviiiviniiiiicce e 191
Figure 6-98 SPLET - WY ..o i mismissasissmiviiis s psissios s issinsics 192
Figure 6-49 File Bxtravtor THIILYcouimaisissvimmssnsiniisemmssmsiisisis s 192
Figure A-1 Use Case MOdelocoooiiiiiiiiiiiiiicieee et 214
Rionie A-2 SPL. Feghiite Model..odnammmminmasnmmmaimsssion e s 218
Figure A-3 User Interface Interaction Modelc.oooiiiiiiiiiee 220
Figure A-4 User Interface - MainULcccoooiiiiiiicieieee e 221
Figure A-5 Activity Diagram - MainUI User Interfaceccccocoooiiiiiiiicninccnne. 222
Figure A-6 Customization Phase - MainUI User Interfacecccoooovvreveerccecnnnne 223
Figure A-7 Interaction Modeling - MainUI user Interface..............ccccccoooviiiiiinnnnn., 224
Figure A-8 Equipement/Antenna setup for MMCcccooiiiiiiiiiicice 225
Figure A-9 Activity Diagram — MMCconnect UlL.............cccooiieiiiiiiimniiieciccieecieeeene 226
Figure A-10 Collaboration Diagram - MMCconnect UL..............cccovieviciriciiiniiannn. 226
Figire A-11 ISrCOMBECHONWSS (.vovviimsivmmmsiammsrissis s isivsmisivismeissid 227
Figure A-12 Equipment/Antenna Setup - RMS...........ccoooiiiiiiiiicice 228
Figure A-13 Activity Diagram — RMSconnect Ul..............c.oooveeoiiiiiiiieeeieeiee e 229
Figure A-14 Collaboration Diagram - RMSconnect UI...............cccooiiiiiiiiiiiinn, 229
Figure A-15 Equipment/Antenna Setup - MMS ..o 230
Figure A-16 Activity Diagram — MMSconnect Ul...............ccoovriincniiiiciiecicceen 231
Figure A-17 Collaboration Diagram - MMS ... 231
Figure A-18 Interference Measurement ULcoooiiiiiieniiineieiecee e 232
Figure A-19 Activity Diagram — InterferenceMeasurement Ulc...ccee. 233
Figure A-69 Customization Phase — InterferenceMeasurement Ul............................... 234
Figure A-21 Collaboration Diagram — Frequency Deviation................ccccooeeeiirenne 235
Figure A-22 Web Service Modelingcccoueeiiiiiinciiincsiis i 236
Figure A-23 Activity Diagram - MainUI User Interface..............c..ccocooeniiciicicnn. 237
Figure A-24 DCAC Implementation - MainUI User Interface....................cccccenn. 238
Figure A-25 DCAC-SC Implementation - Main Reservation Ulcccccoeeeinn. 243
Figure A-26 Integrated Source Code - MainUIcoooiiiiiiiiiiiiicccecn, 245
Figure A-27 SCAC Implementation - Main Reservation UlL............c.cccooviviiiniiicnnnn. 249

Figure A-28 Integrated Source Code -MainUIccoooiiiiiiiiiiie 250

http://www.tcpdf.org

‘e o* inghiall)l

4 DARALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Software Product Line Engineering Based on Web Services 1Ulgusll
Saleh, Mazen M. Aquil rosan | alioll

Gomaa, Hassan(Super.) to> aslio

2005 HENVWN PR

a9 uS19,49 ‘8990

618453 :MD »3,

duzol> Jilw, ESYEINIFTY

English :aelll

ol,9:8> allw, ragodell as,all

George Mason University asol=l

Volgenau School of Engineering raudsUl

a,S5,0V daxiodl WLVl radgall

Dissertations 1Wlogleall aclgd

Olowll awiis (wlogleoll audi oYl «Oliseo)l :aolgo
https://search.mandumah.com/Record/618453 ol

‘ ‘ abbgaxe Soaxl gao> .doghaioll ,l> 2019 ©
Pl 3lall 03 el of Juos cliSay absgaxo il Sgi> gaox Of lale il Bgi> wlol go gdsall Syl (sle <l aslio 3Ll 0in
s ol sl Bgis Lol oo s gurai Ugs (iSO 2yl of iVl @8lso Jio) dleas S| yue il ol Jigmll ol ol gious (osd (sl

ol Lalu Zyl_ﬂbl

.aoglaioll

www.manharaa.com

https://search.mandumah.com/Record/618453

Software Product Line Engineering Based on Web Services

A dissertation submitted in partial fulfillment of the requirements for the Degree of
Doctoral of Philosophy at George Mason University.

By

Mazen M. Aquil Saleh

Bachelor of Science, Texas Southern University, 1990
Master of Science, American University, 2000

Director: Dr. Hassan Gomaa
Professor, Information and Software Systems Engineering

Spring Semester 2005
George Mason University
Fairfax, Virginia

ABSTRACT

SOFTWARE PRODUCT LINE ENGINEERING BASED ON WEB
SERVICES

Mazen Saleh, Ph.D.
George Mason University, 2005

Dissertation Director: Dr. Hassan Gomaa

The field of software reuse has evolved from reuse of individual components towards
large-scale reuse with software product lines. A software product line (SPL) consists of a
family of software systems that have some common functionality and some variable
functionality. A family of systems is frequently referred to as a software product line or

software product family.

This thesis investigates the technology of web services in the development and
customization of software product lines. Web services are defined as a collection of
software components that use XML to communicate with other applications over the

Internet.

Based on a survey of SPL engineering methods and environments, current approaches do

not address the design, development, and automatic customization of software product

lines based on web services. It is necessary to extend the current approaches for modeling

single web services-based systems to address the unique issues of software product lines.

It is also necessary to introduce an automated development environment that enables
developers to develop and automatically customize the web services-based software

product line to generate executable target systems.

In order to solve this problem, this research develops a design approach for developing
software product lines based on web services. The design approach is based on a
multiple-view model for SPL. It addresses the unique issues of engineering a web

service-oriented customizable software product line system.

This research also describes three different development approaches to develop the
proposed SPL design for automatic customization. The first approach describes the
development of a SPL application that can be customized dynamically at run time. The
second approach is an extension to the first approach to include separation of concerns
between variable source code and kernel source code. The third development approach
describes the development of a SPL application that can be customized at source code

integration time.

A proof-of-concept software product line engineering environment is developed to

support the different development and customization approaches. The SPL engineering

environment supports the creation of a SPL model, customization of SPL applications
based on each of the development approaches, and establishing separation of concerns

and integration between variable source code and kernel source code.

SOFTWARE PRODUCT LINE ENGINEERING BASED ON WEB
SERVICES

by

Mazen M. Aquil Saleh
A Dissertation Submitted to the
Graduate Faculty
of
George Mason University
In Partial Fulfillment of
The Requirements for the Degree
of
Doctoral of Philosophy
Information Technology

Committee:

W q ,D’W/ Hassan Gomaa, Dissertation

Wy Kerschberg

<l

M %«m/ Alex Brodsky
\@ //ﬁébé \°"‘"“"“—‘-" Curtis Jamison
e a Z;,l_/— L M@hen G. Nash, Associate Dean for

4 Graduate Studies and Research
Lloyd J. Griffiths, Dean, School of
/ Information Technology and Engineering
Date: & /726 / 1005 Spring, 2005
J / George Mason University

Fairfax, Virginia

il

Dedication

I would like to dedicate this dissertation to my father, Mohammad, and mother, Ehsan,
for all their support, encouragement, moral teachings, and sacrifices throughout my entire
life and my PhD journey. My father has always been my role model for his wisdom and
way of life. My mother has given me eternal love and care.

I also dedicate this dissertation to my beautiful wife, Sahar, and my children, Faris,
Amani, and Reem. My wife has stood by my side since my undergraduate study. She has
been my close friend and my life companion.

111

Acknowledgment

I would like to express my deep appreciation to my PhD. Advisor, Prof. Hassan Gomaa
for his great guidance, encouragement, and support throughout my PhD program. He
taught me all of what I know in the Software Product Line Engineering field. He made it
possible for me to relate the academic teachings to real life working experience. He has
always found time to work with me and keep me focus in my research. His guidance and
critiques have influenced my research to produce quality work. I truly believe that he is
the best advisor a student can have.

I would like to thank Dr. Kerschberg for his teachings and support. His method of
teaching was outstanding. He opened for me many doors to new knowledge. His
teachings had great influence in my research.

I would like to thank my entire dissertation committee for their encouragement and
support.

Finally, T would like to thank Erika Olimpiew for her help and support. We have been in
this PhD journey together from the beginning. Erika and I have started a PhD informal
sessions that were held weekly with many graduate students to exchange information and
obtain feedback. Her comments and critiques were invaluable.

v

TABLE OF CONTENTS

Page
ABSTRACT ...cocoicivaniisisisssssiscasnssrerssisssns o). 4 |

1. INTRODUCTION

1.1 BACKGIOUNA............oviciiictcect et es et s s esse s s s snsesessenes 1
1.2 Research Problem and Approach.... 2
1.3 Importance and Rationale of This Research R AR i
1.4 Terminology ctrasssassastensssessenssasassussasesasssstssansassnnsaschessrasnsustasasansnss s s nssassnsasansssass 3
5
6

LS OREHIRHON i R G i R e s s

2. RELATED WORK

2.1 HHOICHONt cnmsnserssssrensannessdsinemmassismsanernasshstadenit sepi A GRS TR ST A G 6
2.2 Software Product Liescccmmnisinssissinsiivisisissssssasssamiass 6
2.3 Evolutionary Software Product Line Engineering Process..............cccccovvrevvinviennnn 7
2.4 Multiple-View Models of Software Product Lines................cccoovuevromucercivnruccrncicne. 8
2.4.1 Use Case Model for Software Product Linesc..coooeiieiiiiiiiieiincee, 9
2.4.2. Feature Analysis for Software Product Lines................cccoooooiiiiiiciii. 9
2.4.3 Static Model for Software Product Lines..............cccooooiiiiiiicinciiiiicne 10
2.4.4 Collaboration Model for Software Product Linescccoccoeevcncncl 11
2.5 Other Software Product Line Engineering Methodsccccooveiiiciiniiinnne, 12
2.5.1 Feature-Oriented Domain Analysis (FODA)cccccoviiiicniiviiciiicinens 12
2.5.2 Reuse-driven Software Engineering Method (RSEB)ccccccccie. 13
LS. FRAST censsnrssornermrasnmssassasiasanmssssnsapemssnssnorstansanadosssshingansonsssssmoasenssnsnssrasss 13
e 1 14
2.5.5 Knowledge-Based Requirement Elicitation Tool (KBRET).......................... 14
2.5.6 Web-Based Software Product Linesc.ccoceviiiiiicnniiiciiniicciceeennes 15
2.6 Component-Based Software Engineering s e T
2.7 Web Services... o e s ok R e e AR
2.7.1 Advantages of Web Semces ... 20
2.7.2 Disadvatifages of Web S&tVices.........ummmnmmannsmansasi 21
2.7.3 Service-Oriented ArChiteCture..............c.ooevveirieeeiiiirececceee e 21
2.8 Aspect-Oriented Programming................coocoooeoeremrecensicceeiesinsinncsesesessissscssonssscsssssssnnenss 22
2.9 Pramit TOOIORY..ccuncusivuscisssismsisssmmsnssisasssovststsnie s e s s NS 058 24
210 SUIMIMATY ..o eesses e ssss st esse s b s sassaseseestsssssasnsssssnsssssssesassassaes 26

3. PROBLEM STATEMENT AND RESEARCH APPROACH............ 27
3.1 INEOQUOHION. ...ttt ssbes s sss s sssss s 27
3.2 Problem Statement ... e s s B
3.3 Research Approach v 28
3.4 Design Method for Soﬂware Product Llne Serwce—Onented Arch1tecture .30
3.5 Developmeiit ERVITORIIEIISo uimmumismsssssisiiasimssississhssssisissisiitasisis v 31
3.6 Proof-of-oncept Development EnvIironment.................ccoveoveveeeeereueceereuscmseeneseesiconnnee. 3%
3.7 Validation... . sk R T
3.8 Comparison w1th Other Approaches .. 38

3.8.1 Comparison with Other Software Architectures and Product Line Research..38
3.8.2 Comparison with Development Approaches and Toolsc.c...... 42
F D BN . ..o cnvusepninisives i s s s S i SR A SRR A i i 45

4. A DESIGN METHOD FOR SOFTWARE PRODUCT LINES

BASED ON WEB SERVICES - 46
4.1 Introduction.... - somsermsesersnsssnses A SRS D
4.2 Design Architecture of SPL Engmeenng Phase sl

4.2.1 Use Case Modeling...........cccooviiiiiiiiiiieiececce e 49
422 Peattte MIOHBINE i sici e isiibsiarsnnrs v A S A s 32
4.2.3 User Interface Navigation Modeling...........co..nsmsimssiasitimsis 53
4.2.4 Interaction Modeling...............cccoooiiiiiiiiiiiiiiiiicee s 56
4.2.5 Aetivity Moot . .c.usiunansnsonussmssmsminmsn s 58
4.2.:6 Software Architecture Modeling: ... 61
4.2.7 Attributes of Entity CIasses...............c.ccoeievevieiieieiieeroieiseseee e 64
4.2.8 Design of Component Interfacesccccocvieiiiiiiniiiciiiiiiiciicciccns 64
B SUMIIUAEN oic0s oo oussviossisaioins oo i e S O R S A A 67

5. DEVELOPMENT APPROACHES FOR PRODUCT LINE _

CUSTOMIZATION AND SEPARATION OF CONCERNS................. 68
5.1 Introduction.... TR iiiviisse OB
5.2 Dynamic Customlzatlon of Cllent Apphcatlon s IO

5.2.1 Development of DCAC Pattern.............cccocoiiieieinieeeiicr e, 82
5.2:2 Adviitages of DCAC ApProatht; ..o ansunmsisnssimiisa i mmasi et 91
5.2.3 Disadvantages of DCAC Approach:...........ccumssmmammvsssssessmvas 92

5.3 Introduction to the Customization Approaches Based on Separation of Concerns. 93
5.4 Development of Dynamic Customization of Client Application with Separation of

Concems.............. SRRSO SRR . .
54.1 Development of DCAC SC Pattem ... 103
5.4.2 Advantages and Disadvantages of DCAC-SC Approach:cccoeee 111

5.5 Development of Static Customization of Client Application (SCAC) with

Separation Of COMCEIMNS...............c.ooeeuiirieieeeeeee ettt ses s 112
5.5.1 Development of SCAC PAUSI. ..ci.inisiasuaisiisiasisissesinsissasies 123

252 Advantages of BEAC SPPI0AOIE <o asssmmmmsamamrmsssssmmpmmm oy 133

5.5.3 Disadvantages of SCAC Approach .. 133
5.6 Comparison of Customization Methodsccccccooerverrnrionrecsrieriiesieeseesienienns 134
5.7 Usage of Devel()pment Approaches iSRRI
5.8 Summary 136
6. SOFTWARE PRODUCT LINE ENVIRONMENT PROTOTYPE.137
6.1 INETOAUCHION.........ooovvieieiiciceieie st ettt esseneneaes 137
6.2 Software Product Line Environment Prototype (SPLET)..........c.ccccccooccvuuecurcnincnecc. 138
6.2.1 Featurs Modeling: SubBYBIBINE ... sass s 143
6.2.2 Customization SUbSYSIEM:c..ccoiiiiiriiiriieeeiee e ereee e cere e eee e 156
6.2.3 Separation of Concerns and Source Code Integration Subsystem................. 171
O 24 LY SUbRTEIOI. oot b s s s s G s SR SRS 191
6.3 Validation.........c.cooouiiriiiecieecceeeee et 193
0.3, 1 Validation PIOCEES . vecsiessvoiini st s s s S s i s sissss 193
O SUUTNURDY oo ittt o 555 8 R SR AR 196
7. CONTRIBUTIONS AND FUTURE RESEARCH 197
7.1 Introduction.... SRS s Rwiewessssacicesss AT
7.2 Research Contnbutlon ceeeaeeee e e s e s s e s e s s e ssessessnasssessassssssssnsiesssnnsssansenss 197
T3 Pl BRI .ot i A A S R S S B 202
7.3.1 Testing of SORWAre Product LINESc.cccoeerivrinieninressunsnnesssssessssssnesns 202
7.3.2 Transaction of Web Services Using Customizable Workflows 202
7.3.3 Performance of SPL Applications Based on Web Services.......................... 202
7.3.4 Evolution of SPL Applications Based on Web Servicesc....... 203
T4 SUIMMATYooooeeeeneeeeeeee et eeeee e esee e et sneesenseesaeraeenaeseeneenseeeeseensenseaneasansnen 203
APPENDIX A: RADIO FREQUENCY MANAGEMENT SYSTEM: A
CASE STUDY 211
U TOBPOIIORION. .ccicicnaimscomaiesos s s sdtims i oA A4 A S 211

A2 Validation of This ReSearch.............o...ccovvureeercoreerreieeiececeeiececeeseeeeseesecnscsneseenees 212
A.3 Multiple-View Design ArChfECture...............cc..ouicemsiimiinisisssscasisssasisiisssssssansssnssssesss 212

BRIl T R NI NIRRT N S R SRR B S BSOS SRR A RS 213
A 3.2 Feature Modelingccoveviioiiiiieiiieee et e 216
A 3.3 User Interface Interaction Modelingccccoooiiiiiiiiiiiiiniiiiiciie 219
N XD 1 T ORISR 221
A.3.5 Web Services MOdelingc.oooueiviiiiiiiiiieiie e 236
A.A. BPL DOVSIGIISHEovivmmmmsimssine s s s o s s s s s s e st 237
A.4.1 Dynamic Customization of Client Application (DCAC) Approach............. 238
A.4.2 Dynamic Customization of Client Application with Separation of Concerns
(DCALC-SCY APPLOACH........cocciiiiiviiinivnnioniimmisiissasssssomssimss s s sssas s savaaiis 242
A 4.3 Static Customization of Client Application (SCAC) Approach................... 248

AAA-SUNIBIT. i R S A A R 252

vii

APPENDIX B: DEVELOPMENT ENVIRONMENT PATTERNS.....253

B MBI ot i s s s 253
B.2 Dynamic Cient Application Customization Pattern ... i .. 254
B.3 Dynamic Client Application Customization with Separatlon of Concerns Pattem

e .. 261
B4 Statlc Cllent Appllcatlon Customlzatnon Pattem IR, |

viil

LIST OF FIGURES

Page
Figure 2-1 Evolutionary Software Product Line Engineering Processccccc.c...... 8
Figure 2-2 Component-Based Design Pattern [Bachmann00]cccooociiiiiiiinnn. 17
Figure 2-3 Service-Oriented Architecture [Irek03]...........ccoiiiiiiiiiiiiiicccee 22
Figure 2-4 Aspect-Oriented Programming Architecture [Anastasopoulos01]..............23
Figure 2-5 Example of an x-frame hierarchy [ZhangO3b]cccccooooiiiiiiiinins 25
Fignire 3-1 SPLET CODPODBIER ..;.5cch o iinrmmms iavatos s b s ot eiessiiassd o s s sbssbsueisy 36
Figure 4-1 Evolutionary Software Product Line Engineering Processc.cccoc.... 46
Figure 4-2 Use Case Diagram.... SN O - | |
Figure 4-3 Feature Dependency Model .. 53
Figure 4-4 User Interface Navigation Model................c.ccooiiiiiiiiiniiiiiiinicccicniene 35
Figure 4-5 GUI -RoomReservation Ulcocoovimiiiieiinneiieie e enceeees 56
Figure 4-6 Collaboration Diagram — Reserve single room.. L TR .7
Figure 4-7 Expanded Collaboration Diagram — Reserve smgle TOOM ..ovvinrieiiieeeanne 58
Figure 4-8 Activity Diagram— Main ReServationoooeerieeieiooieioneieeiceaanne 59
Figure 4-9 Activity Diagram — Overall Room Reservation Ul ..., 60
Figure 4-10 Activity Diagram—Reserve ROOMcccooeiiioceiniiiciiiiieiciicccsicceees 61
Figure 4-11 Example of Web Services Grouping............c.ccoovivveuccvniiicicicieciccenes 62
Figure 4-12 Sample Input/Output for ReserveRoomWS ... 63
Figure 4-13 Sample Entity Attributes for ReserveRoomWS ... 64
Figure 4-14 Example of ports and connectors - RoomReservation Feature.................... 65
Figure 4-15 Example of Ports, Provided, and Required Interfaces.................................. 66
Figure 4-16 Example of Port Interfaces Design.............ccoeeeieniniiiniiniieiiiiiiiecce e 67
Figure 5-1 Conceptual Overview of DCAC Approach ..o, 71
Figure 5-2 Dynamic Customization Workflows (DCAC) Pattern...............cc.cccceeeennnn. 81
Figure 5-3 Activity Diagram - Main Reservation UL...............cccoocoeiiiiiiiiiiieecee 82
Figure 5-4 Customization phase - Main Reservation UlL.................c.oociinn 84
Figure 5-5 Activity Diagram — RoomReservation UlL..............cccocooiviiiiiiininin. 87
Figure 5-6 Collaboration Diagram — ROOMRESErvationcccceeveeiereuereereecenennn 89
Figure 5-7 Implementation - RoomReservation Ulccocoiiiiiiiiiiiiiicccice 89
Figure 5-8 Conceptual Overview of DCAC-SC Approach...........ccccoeoiiiiiiiiiiinnnn. 97

Figure 5-9 Dynamic Client Application Customization with Separation of Concerns
PAHCIN.....ocoronooinnssonienssionnnsmsasnsommossronnserEIntBs LA R RS ABT seESoRRa s 103
Figure 5-10 Activity Diagram - Main Reservation UL................cccocoiiiiinnncicine. 104
Figure 5-11 MainReservation - Graphical User Interface................cccoocooveiiiiiininnnn 105

Figure 5-12 Implementation - Main Reservation UlL..............cccccoiiiiiiiiiiiiiinnnnn, 106

ix

Figure 5-13 Implementation - Main Reservation ULccccooiiiiiiiiiecciicee e 108
Figure 5-14 MainReservation Ul - Insertion Points List.................cccovivieeiieiicineeee, 110
Figure 5-15 Conceptual overview of SCAC approach...................ccocoooiiiiiiiiiiieen. 113
Figure 5-16 Static Client Application Customization (SCAC) Pattern......................... 122
Figure 5-17 Activity Diagram - Main Reservation Ul..............ccoccooviiiiiniininiecnnn. 123
Figure 5-18 MainReservation - Graphical User Interface..............c.ccooccoviniiiiinnnnn. 124
Figure 5-19 Implementation - Main Reservation UL................cccoverviiiiiiiiiinicrieenee 126
Figure 5-20 Implementation - Main Reservation UlL............c.c.ocooiiiiiiiinicinccninn, 129

Figure 5-21 Implementation - Main Reservation UI with RoomReservation Feature.... 130
Figure 5-22 Implementation - Main Reservation UI with ResidentialReservation Feature

.. 131
Figure 6-1 Evolutionary Software Product Line Engineering Process 137
Figure 6-2 SPLET COMPONENES...............cooovvieieiiiiieiie e eisceseeseeseanieeaesaee e siesanesens 141
Figure 6-3 Detailed Description of SPLETouiiiinsisssdosiisssisiesisssisiiosis 142
Figonre G- SPLIET = IR SC000K. .o ccivaimsivssiissiisnssassinss s s sssets s sas s o 143
Figure 6-5 Feature Modeling Subsystem...............ccccooiriiieiiiiicncceceecc e 144
Figure 6-6 Entity Class DIagramcccoiviiiiieiiiieiie e ccieesee e sn e siae e 145
Figure 6-7 Feature Editor-Main Interfacecccccoooiiiiiiiici e 147
Figure 6-8 Feature Editor — Feature Creation.................cccveeveeeierevrieiiiesieeeeeveeieaneenns 148
Figtite 6-9 Featiie CHOBHON. ... cocomimvinmmsiimiseiasias s s s s sr s osiss 148
Figure 6-10 Featurs Dependency Tres.........oaosssmimmsmss s i 150
Figure 6-11 Feature Editor — Related Diagramscccocoovouiiiiiiiiiiiniiciiicicece 150
Figure 6-12 Storing Related SPL Artifacts..................cc.oooviivieiiiiiiiiieeiccccee 151
Figure 6-13 Feature Editor — Parameterized Variables...................ccocoooviiiiiinnnnne. 152
Figure 6-14 Creation of Parameterized Variables................c.cccoovieiiiiiieriinicieccenenn, 152
Figure 6-15 Feature Editor - Web Servicescccooiivieoieiciiecieciireecee e 153
Figure 6-16 Adding Web ServiCes............c.c.ooviiiieiieiiiciceiieie e 153
Figure 6-17 Web Service EdItOrocoiiviiiiieiie e 155
Fipiite 6-18 Adaing Wieb SSIVISEE.ccuivnwnsmsismsismsmsssvin i o wmosivssss 155
Figure 6-19 Customization Subsystem in SPLETcccccoiiiiiiiiiiiicne, 157
Figure 6-20 Feature Selector - Main Interface.................cccoocooiiiiiiiiiiiiiiiccceecee, 158
Figure 6-21 Feature Selector - Customization....................c.ocooveeeeeeenienieieeeeesieeeeenes 159
Figure 6-22 Feature Selector — DIiagrams..............cccooueveeirerciniiineieecceisiceiecec s 161
Figure 6-23 Display ATHEREES ... oo s s s eissesise 161
Figure 6-24 Feature Selector - Related Web Servicesccooooiiiiiiiiiiicii 162
Figure 6-25 Web Service INVOCAtON.ccoovevieiiieieeieeieeereiei et 163
Figure 6-26 Web Service invocation - ReserveRoomocoeeieeiieiiieniiciiicce, 164
B0 627 SIVAP NEBBSREE ...ocosianianssmins v imss s s i s s s AT RS TS0 165
Figure 6-28 Results Returned from roomReservation WS..............ccooviiiiiinicnnn. 166
Figure 6-29 Customization File - Generator Component.................c.ccoooiiiinin 169
Figure 6-30 Entity Class Diagram - Customization File.............c.cccoiiiinni, 170
Figure 6-31 Customization File Generationoocoooieriiiiinienreceecniiccee e 170
Figure 6-32 SPLET — Separation of Concerns & Code Weaving.................c.cccceeneene. 172

Figure 6-33 Variable Source Code Editor - Single Features...............cccccoovvvniiiinnnne. 174

Figure 6-34 Single Feature Variable Source Code File Creationcccccooeue. 174
Figure 6-35 Variable Source Code Editor - Multi Featuresc....cccccveeeeennnnn, 176
Figure 6-36 Multi Feature Variable Source Code File Editor.............c...cocvvevveenennnn... 177
Figure 6-37 Variable Source Code Editor - Composed Features..............cccocceevenennne. 178
Figure 6-38 Creation of Variable Source Code Filecccccoiiienininiicecccee 179
Figure 6-39 Code TTACKETcc.oveeieeeeeee oo e e e s e e e e e e neeeenaeennes 181
Figure 6-40 Tracking of Feature Related Insertion Pointsccccoooieiiiicnnee. 182
Figure 6-41 Tracking of Specific Insertion Point Namecc.ccccooviviiiiiininn. 183
Figure 6-42 Code WEAVET...............c.coioviiiiiiiiieeeiisiiesieseesessseee s seesse s s essenescneensenas 185
Figure 6-43 Dynamic IMEGration...........uiuimaiasasiisssisiosississssisssisissisios 186
Figure 6-44 Code Weaving for DCAC-SC Method..............ccoocoooiiiiiiviiiiiiicicceee 187
Figure 6-45 Static INtegrationccouerereeeinieiiieieeee e cssecesecnseinans 189
Figure 6-46 Code Weaving for SCAC Methodc.ocooeiiiiiiiciiniiiccicieca 189
Figure 6-47 Samples of Variable Filec.cccoooviiiviniiiiicce e 191
Figure 6-98 SPLET - WY ..o i mismissasissmiviiis s psissios s issinsics 192
Figure 6-49 File Bxtravtor THIILYcouimaisissvimmssnsiniisemmssmsiisisis s 192
Figure A-1 Use Case MOdelocoooiiiiiiiiiiiiiicieee et 214
Rionie A-2 SPL. Feghiite Model..odnammmminmasnmmmaimsssion e s 218
Figure A-3 User Interface Interaction Modelc.oooiiiiiiiiiee 220
Figure A-4 User Interface - MainULcccoooiiiiiiicieieee e 221
Figure A-5 Activity Diagram - MainUI User Interfaceccccocoooiiiiiiiicninccnne. 222
Figure A-6 Customization Phase - MainUI User Interfacecccoooovvreveerccecnnnne 223
Figure A-7 Interaction Modeling - MainUI user Interface..............ccccccoooviiiiiinnnnn., 224
Figure A-8 Equipement/Antenna setup for MMCcccooiiiiiiiiiicice 225
Figure A-9 Activity Diagram — MMCconnect UlL.............cccooiieiiiiiiimniiieciccieecieeeene 226
Figure A-10 Collaboration Diagram - MMCconnect UL..............cccovieviciriciiiniiannn. 226
Figire A-11 ISrCOMBECHONWSS (.vovviimsivmmmsiammsrissis s isivsmisivismeissid 227
Figure A-12 Equipment/Antenna Setup - RMS...........ccoooiiiiiiiiicice 228
Figure A-13 Activity Diagram — RMSconnect Ul..............c.oooveeoiiiiiiiieeeieeiee e 229
Figure A-14 Collaboration Diagram - RMSconnect UI...............cccooiiiiiiiiiiiinn, 229
Figure A-15 Equipment/Antenna Setup - MMS ..o 230
Figure A-16 Activity Diagram — MMSconnect Ul...............ccoovriincniiiiciiecicceen 231
Figure A-17 Collaboration Diagram - MMS ... 231
Figure A-18 Interference Measurement ULcoooiiiiiieniiineieiecee e 232
Figure A-19 Activity Diagram — InterferenceMeasurement Ulc...ccee. 233
Figure A-69 Customization Phase — InterferenceMeasurement Ul............................... 234
Figure A-21 Collaboration Diagram — Frequency Deviation................ccccooeeeiirenne 235
Figure A-22 Web Service Modelingcccoueeiiiiiinciiincsiis i 236
Figure A-23 Activity Diagram - MainUI User Interface..............c..ccocooeniiciicicnn. 237
Figure A-24 DCAC Implementation - MainUI User Interface....................cccccenn. 238
Figure A-25 DCAC-SC Implementation - Main Reservation Ulcccccoeeeinn. 243
Figure A-26 Integrated Source Code - MainUIcoooiiiiiiiiiiiiicccecn, 245
Figure A-27 SCAC Implementation - Main Reservation UlL............c.cccooviviiiniiicnnnn. 249

Figure A-28 Integrated Source Code -MainUIccoooiiiiiiiiiiie 250

1. INTRODUCTION

1.1 Background

The field of software reuse has evolved from reuse of individual components towards
large-scale reuse with software product lines [Clements02]. A software product line
(SPL) consists of a family of software systems that have some common functionality and
some variable functionality. Parnas referred to a collection of systems that share common
characteristics as a family of systems [Parnas79]. According to Parmnas, it is worth
considering the development of a family of systems when there is more to be gained by
analyzing the systems collectively rather than separately, i.e. the systems have more
features in common than features that distinguish them. A family of systems is now

referred to as a software product line or software product family.

A Software Product Line (SPL) is developed by engineering a reusable architecture for
the product line, which can be configured to generate target applications [Gomaa99,
Gomaa04]. The two major activities used in developing product lines are SPL
engineering and application engineering. SPL engineering involves the analysis, design,
and implementation of product line software that satisfy the requirements of the families

of systems [Weiss99, Gomaa04)]. Application engineering involves tailoring the

cengineered SPL to produce target applications based on a given set of configuration

requirements [Sugumaran92, Gomaa04].

This dissertation addresses product lines based on web services. A web service is defined
as a collection of functional methods that are grouped into a single package and published
in the Internet for use by other applications. Web services use the standard Extensible
Markup Language (XML) to exchange information with other software via the Internet

protocols [Deitel et al. 2003, Howard04, Booth04].

Although there is much research into software product line engineering, this research
extends product line concepts to address the engineering and customization of product

lines that are based on web services.

1.2 Research Problem and Approach

This research focuses on designing, developing and customizing software product lines
based on web services to derive executable target applications from the product line using
an automated customization environment. The approach taken is to:
a) Develop a design approach for software product line service-oriented architecture.
b) Introduce three different development approaches to support the automatic
customization of SPL architecture and components:

c) Develop a proof-of-concept prototype to support this research

d) Validate this research with two web services-based software product line case

studies.

1.3 Importance and Rationale of This Research

The idea of web services has been strongly promoted in industry by companies such as
Microsoft, IBM, Oracle, and Hewlett-Packard. They see this new technology as a broad
new vision for how software systems are analyzed, developed, and used [McDougall 01].
Web services employ open standards that are text-based, which introduce a new approach
to communication between heterogeneous platforms and applications [Deitel 03]. Using
the already existing internet technology, web services make communication,
interoperability, and integration cheaper and easier to achieve, compared to current
methods, such as CORBA and DCOM [Deitel 03]. As the use of web services continues
to grow, software product lines engineers should take full advantage of this technology.
Therefore, it is essential to develop a new methodology that enables the design,
development, and customization of software product lines that consist of web services-

based components.

1.4 Terminology

This section provides definitions of important terms used in this dissertation.

Unified Modeling Language
Unified Modeling Language (UML) is a standardized object-oriented development

environment that is used to analyze and design systems.

Software Product Line

A software product line (SPL) is a family of systems that share common features. It is
developed by engineering an application domain that can be configured to generate target
systems through the customization process of selecting optional and alternative features.
[Parnas79, Gomaa04]

Feature

A feature is a functional requirement of a software application.

SPL Engineer

The SPL engineer is responsible for designing and developing the product line.
Application Engineer

The application engineer is responsible for customizing the product line to derive target
applications.

Kernel Source Code

Kernel source code refers to source code that exists in all derived target applications.
Variable Source Code

Variable source code refers to optional or alternative source code blocks that are
integrated with kernel source code based on feature selection to produce a customized
target application.

Separation of Concerns

Separation of concerns refers to the separation of common and variable product line
concerns. It involves the separation of variable source code from kernel source code into

a variable source code file.

Code Weaving

Code weaving is the integration of kernel source code with optional and alternative
source code

Client application

Client application refers to the client subsystem and the software objects it contains.
Server application

Server application refers to the server subsystem and its constituent web service

components and database.

1.5 Organization

The rest of the dissertation is organized as follows. Chapter 2 contains an overview of
related work. Chapter 3 addresses the problem statement and research approach,
including comparison of related work with this research effort. Chapter 4 describes the
proposed design approach using a Hotel System case study. Chapter 5 describes the three
development approaches and their customization environment. Chapter 6 describes the
proof-of-concept prototype that is used to support this research. Chapter 7 includes
contributions and future research. References and appendices are attached at the end,

including the second case study of Radio Frequency Management System.

2. RELATED WORK

2.1 Introduction

This chapter surveys other research efforts that are related to the research described in
this dissertation. This chapter begins by defining software product lines in section 2.2.
Section 2.3 describes the Evolutionary Software Product Line Engineering Process
(PLUS). Section 2.4 describes the multiple-view model of software product lines used in
the PLUS environment. Section 2.5 addresses other software product line engineering
methods. 2.6 describes component-based software engineering. Web services are
described in section 2.7. Section 2.8 describes Aspect-Oriented Programming, and

section 2.9 describes frame technology.

2.2 Software Product Lines

A software product line is a family of systems that share common features [Gomaa92,
Gomaa04]. It is developed by engineering a Software Product Line (SPL) that can be
tailored to generate target systems [Gomaa99, Farrukh98, Weiss99]. Software product
line engineering involves the analysis, design, and implementation of a product line that
satisfies the requirements of all target applications [Sugumaran92, Gomaa04]. This can
be achieved by capturing the commonality and variability of a family of system at the

analysis phase, and applying this information at the design and implementation phases

[Gomaa 99]. “The goal of software product families is to improve productivity through

software reuse. A new application system can be configured from the domain model

given the common features (requirement) of the domain and variable features that reflect

differences among the members of the product family” [Farrukh 1998].

2.3 Evolutionary Software Product Line Engineering Process

The Evolutionary Software Product Line Engineering Process (PLUS) [Gomaa04]

consists of two main processes, as shown in Figure 2-1:

a)

b)

Software Product line Engineering. A product line multiple-view model, which
addresses the multiple views of a software product line, is developed. The product
line multiple-view model, product line architecture, and reusable components are
developed and stored in the product line reuse library.

Application engineering. Involves the configuration of target applications from the
SPL architecture and implementation. A target application is a member of the
software product line. The multiple-view model for a target application is configured
from the product line multiple-view model. The user selects the desired features for
the product line member (referred to as target application). Given the target
application features, the product line model and architecture are adapted and tailored
to derive the target application model and architecture. The architecture determines
which of the reusable components are needed for configuring the executable target

application.

Earlier papers have described how this approach was carried out before [Gomaa%6,
Gomaa99] and after the introduction of the UML [Gomaa02, Gomaa04]. This research
describes how product line engineering can be carried out for product lines that are based

on Web Services.

Product Line Multiple-View Model,
Product Line Product Line Architecture,
Requirements Prodsct Lises Reusable Components
—] 5 .
.| Engineering
Product Line
Reuse
Library
Target System
Requirements Target System
Application |——m
T~

Unsatisfied Requirements, Errors, Adaptations

Figure 2-1 Evolutionary Software Product Line Engineering Process

2.4 Multiple-View Models of Software Product Lines

A multiple-view model for a software product line defines the different characteristics of
a software family [Parnas79], including the commonality and variability among the
members of the family [Clements02, Weiss99]. A multiple-view model is represented

using the UML notation [Rumbaugh99, Gomaa0Oa, Gomaa04] and considers the product

line from different perspectives. The PLUS environment [Gomaa04] is based on the

multiple-view mode for software product lines, as described in the following sections.

2.4.1 Use Case Model for Software Product Lines

The functional requirements of a system are defined in terms of use cases and actors
[Jacobson97]. An actor is a user type. A use case describes the sequence of interactions
between the actor and the system, considered as a black box.

For a single system, all use cases are required. When modeling a software product line,
kernel use cases are those use cases required by all members of the family. Optional use
cases are those use cases required by some but not all members of the family. Some use
cases may be alternative, that is different versions of the use case are required by

different members of the family [Gomaa04].

2.4.2. Feature Analysis for Software Product Lines

Feature analysis is an important aspect of domain analysis [Cohen98, Gomaa04, Griss98,
Kang90]. In domain analysis, features are analyzed and categorized as kernel features
(must be supported in all target systems), optional features (only required in some target
systems), and prerequisite features (dependent upon other features). There may also be
dependencies among features, such as mutually exclusive features. The emphasis in
feature analysis is on the optional and alternative features, since they differentiate one
member of the family from the others. In modeling software product lines, features may

be functional features (addressing software functional requirements), non-functional

10

features (e.g., relating to security or performance), or parametric features (e.g., parameter

whose value can be set differently in different members of the product line).

In the object-oriented analysis of single systems, use cases are used to determine the
functional features of a system. They can also serve this purpose in product families.
Griss [Griss98] has pointed out that the goal of the use case analysis is to get a good
understanding of the functional requirements whereas the goal of feature analysis is to
enable reuse. Use cases and features may be used to complement each other. In

particular, use cases can be mapped to features based on their reuse properties.

Functional requirements that are required by all members of the family are packaged into
a kernel feature. From a use case perspective, this means that the kernel use cases, which
are required by all members of the family, constitute the kernel feature. Optional use

cases, which are always used together, may also be packaged into an optional feature.

2.4.3 Static Model for Software Product Lines

A static model for a product line has kernel classes, which are used by all members of the
product family, and optional classes that are used by some but not all members of the
family. Variants of a class, which are used by different members of the product family,
can be modeled using a generalization / specialization hierarchy. UML stereotypes are
used to allow new modeling elements, tailored to the modeler’s problem, which are based

on existing modeling elements [Booch99, Rumbaugh99]. Thus, the stereotypes

http://www.tcpdf.org

‘e o* inghiall)l

4 DARALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Software Product Line Engineering Based on Web Services 1Ulgusll
Saleh, Mazen M. Aquil rosain | alioll

Gomaa, Hassan(Super.) to>] aslio

2005 HENVWNFTRT]

bia>)9 uS19,49 ‘8990

618453 :MD 3,

duzol> Jilw, ESYEINIFTY

English :aelll

ol,9:8> allw, ragodell as)all

George Mason University asol=l

Volgenau School of Engineering raudsUl

a,S5,0V daxiodl WLVl radgall

Dissertations 1Wlogleoll aclgd

Olowll awiis (wlogleoll audi oYl «Oliseo)l :&aolgo
https://search.mandumah.com/Record/618453 ol

‘ ‘ abgiaxo Beaxl grox anghaiall 1> 2019 ©
Aoz 3kl 030 dclb of Juams cliSey abgamo sl F9i> geox 0l lale (il Foi> ol go gdsall Byl (e el d>lio bsloll 0in
s ol sl B> wlol o wnbi> aupai s (s SVl ayl gl oVl gdlgo Jin) aluaws oSl puc il ol ool ol il gaoug s ol

ol Lalu Zyl_ﬂbl

.aoglaioll

www.manharaa.com

https://search.mandumah.com/Record/618453

205

References

[Anastasopoulos01] M. Anastasopoulos and C. Gacek. "Implementing Product Line
Variabilities," Proc ACM Symposium on Software Reusability, Toronto, May
2001, pp. 109-117.

[Anastasopoulos04] M. Anastasopoulos and D. Muthig, "An Evolution of Aspect-
Oriented Programming as a Product Line Implementation Technology,” Proc. 8th
International Conference on Software Reuse, Springer LNCS 3107, 2004, pp.
141- 156.

[Atkinson00] C. Atkinson, J. Bayer, and D. Muthig, "Component-Based Product Line
Development: The Kobra Approach," SPCL, 2000. Available:
http://se2c.uni.lu/tiki/se2c-bib _download. php?id=700.

[Bachmann00] F. Bachmann, L., C. Buhman, S. Comella-Dorda et al., “Technical
Concepts of Component-Based Software Engineering. 2000,” Software
Engineering Institute, Carnegi Mellon University, Pittsburgh, PA, May 2000.

[Bass00] L. Bass, C. Buhman, S. Comella-Dorda et al., “Market Assesment of
Component-Based Software Engineering,” Software Engineering Institute,
Carnegi Mellon University, 2000.

[Baxter01] I. Baxter, “Dms(the Design Maintenance System) a Tool for Automating
Software Quality Enhancement,” Semantic Designs, Inc, 2001.

[Bassett97] P. Bassett, Framing Software Reuse — Lessons from the Real World, Prentice
Hall, 1997.

[Bisson] S. Bisson, “At Your Service”, DNJ, 2004. Available:
http://www.dnjonline.com/articles/architect/may04_atyourservice.asp.

[Bodkin02] R. Bodkin, “Commercialization AOSD: The Road Ahead,” 2002. Available:
http://www.jpmdesign.de/conferences/aosd/2003/papers/AOSD_Commercializati
on_Position 2003 _final.pdf.

206

[Boonsiri02] S. Boonsiri, “Automated Component Ensamble Evaluation,” International
Journal of Information technology, Vol 8, No. 1, 2002.

[Booth04] D. Booth, et al. “Web Services Architecture,” W3C, 2004. Available
http://'www.w3.0rg/TR/2003/WD-ws-arch-20030514.

[Chung03] J. Chung, K. Lin, and R. Mathieu. "Web Services Computing: Advancing
Software Interoperability," IEEE Computer Society, Vol. 36, 2003, pp. 35-37.

[Clements02] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns, Addison Wesley, 2002.

[Cohen98] S. Cohen and L. Northrop, “Object-Oriented Technology and Domain
Analysis,” Proc. International Conference on Software Reuse, Victoria, June
1998.

[Coplien98] J. Coplien, D. Hoffman, and D. Weiss. “Commonality and Variability in
Software Engineering,” IEEE Software, 1998, Vol 15, No. 6, pp. 37-45.

[Deitel03] H. Deitel, B. DuWaldt, et al. Web Services - A technical Introduction.
Upper Saddle River, New Jersey, Pearson Education, Inc, 2003.

[Fontana01] J. Fontana, "Microsoft, Sun Propel Web Services," Network World, Vol18,
No.1, 2001, pp. 8-10.

[Farrukh98] G. Farrukh, "A Method and Software Engineering Environment for
Configuring Applications from Reusable Specifications and Architectures," PhD
Dissertation. George Mason University, 1998.

[Friedlande02] P. Friedlander, D. Collins, "Component-Based Software Development
and the Software Factory," Infotech Update, Vol10, No2, 2002, pp. 4-9.

[Gladwin0O1] L. Gladwin, "Web Driving Demand for Integrated Apps," Computerworld,
Vol. 35, No. 17, 2001, p. 56.

[Gomaa96] H. Gomaa, L. Kerschberg, V. Sugumaran, C. Bosch, and I Tavakoli, "A
Knowledge-Based Software Engineering Environment for Reusable Software
Requirements and Architectures," J. Automated Software Eng, Vol. 3, Nos.
3/4, 1996.

[Gomaa96a] H. Gomaa, D. Menasce, and L.Kerschberg. "A Software Architectural
Design Method for Large-Scale Distributed Information Systems," Distrib. Syst.
Eng, 1996, Vol. 3, No. 3, pp. 162-172.

207

[Gomaa99] H. Gomaa and G.A. Farrukh, “Methods and Tools for the Automated
Configuration of Distributed Applications from Reusable Software
Architectures and Components,” IEE Proceedings — Software, Vol. 146, No. 6,
December 1999.

[Gomaa00] H. Gomaa, Designing Concurrent, Distributed, and Real-Time
Applications with UML, Addison Wesley, Reading MA, 2000.

[Gomaa00a] H. Gomaa, L. Kerschberg, G. Farrukh. "Domain Modeling of Software
Process Model," IEEE International Conference on Engineering of Complex
Computer Systems, [EEE Computer Society, Tokyo, Japan, September 2000.

[Gomaa02] H. Gomaa and Michael E. Shin, “Multiple-View Meta-Modeling of

: Software Product Lines,” the Eighth IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS 2002), Maryland,
December, 2002.

[Gomaa04] H. Gomaa, Designing Software Product Lines: From Use Cases to
Pattern-based Software Architectures with UML 2.0, Addison-Wesley, July
2004.

[Govatos02] G. Govatos, "UDDI is Yellow Pages of Web Services," Network World,
Vol. 19, No. 21, pp. 41, 2002.

[Greenwood04] P. Greenwood, N. Loughran, L. Blair, A. Rashid, “Dynamic Framed
Aspects for Dynamic Software Evolution,” 2004. Available:
http://www.comp.lancs.ac.uk/computing/aose/papers/dynFr_ramse04.pdf.

[Griss98] M. Griss, J. Favaro, M. D’ Alessandro, “Integrating Feature Modeling with
the RSEB,” Proc. International Conference on Software Reuse, Victoria, June
1998.

[Hasimi03] S. Hashimi, “Service-Oriented Architecture Explained,” 2003. Available:
http://www.ondotnet.com/pub/a/dotnet/2003/08/18/soa_explained.html.

[Hao03] H. He, “What Is Service-Oriented Architecture,” 2003. Available:
http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html.

[Holmes03] C. Holmes, A. Evans, “ A Review of frame Technology,” 2003. Available:
http://www.cs.york.ac.uk/ftpdir/reports/YCS-2003-369.pdf.

[Howard04] R. Howard, L. Kerschberg, "A Framework for Dynamic Semantic Web
Services Management," Int. J. Cooperative Inf. Syst., Vol. 13, No. 4, 2004, pp.
441-85.

208

[Hussein03] M. Hussein, "A Software Architecturebased Method and Framework for the
Design of Dynamically Reconfigurable Product Line Software Architectures,"
PhD Dissertation. George Mason University, 2003.

[Irek03] C. Irek, “Realizing a Service-Oriented Architecture With Net,” 2003. Available:
http://www.15seconds.com/issue/031215.htm.

[Jacobson97] 1. Jacobson, M. Griss, P. Jonsson, Software Reuse - Architecture,
Process and Organization for Business Success, Addison Wesley, 1997.

[Jarzabek03] S. Jarzabek, P. Bassett, H. Zhang, W. Zhang”, “XVCL: XML-based Variant
Configuration Language,” ICSE 2003, pp. 810-811.

[Kang 90] K. Kang et. al., “Feature-Oriented Domain Analysis,” Technical
Report No. CMU/SEI-90-TR-21, Software Engineering Institute, November
1990.

[Kirtland99] M. Kirtland, “Designing Component-Based Applications,” Redmond,
Washington, Microsoft Press, 1999,

[Lawson 03] A. Lawson, “Semantic Designs - Design Maintenance System Software
Reengineering Toolkit,” Semantic Designs, Inc. 2003. Available:
http://www.semdesigns.com/Company/Publications/Semantic%20Designs%20-
%20DMS%20SRT%201-1%20(TA000243 APM).pdf.

[Lee02] K. Lee, W. Kuen. "An Introduction to Aspect-Oriented Programming," COMP
610E, 2002.

[Lesaint04] D. Lesaint and G. Papamargarittis, “Aspects for Synthesizing Applications
by Refinement,” LNCS 3107, 2004, pp. 115-126.

[Lesiecki02] N. Lesiecki, “Improve Modularity with Aspect-Oriented Programming,”
IBM, 2002. Available: http://www-106.ibm.com/developerworks/library/j-
aspectj/.

[Loughran04a] N. Loughran and A. Rashid, “Framed Aspects: Supporting Variability and
Configurability for AOP”, Proc. 8th International Conference on Software Reuse,
Springer LNCS 3107, 2004, pp. 127-140.

[Loughran04b] N. Loughran, A. Rashid, W. Zhang, S. Jarzabek, “Supporting Product
Line Evolution with Framed Aspects,” 2004. Available:
http://www.comp.lancs.ac.uk/computing/users/loughran/ ACP41S%5Bfinal%5D.p
df

209

[McDougall 01] P. McDougall, J. Levitt. "Decoding Web Services," InformationWeek,
issue 857, 2001, pp. 28-37.

[Mills00] K. Mills, Hassan Gomaa. "A Knowledge-Based Method for Inferring Sematic
Concepts from Visual Models of System Behavior," ACM Transaction, Vol. 9,
No. 3, 2000, pp. 306-37.

[O'Hara98] O'Hara-Schettino, Elizabeth, and Hassan Gomaa. "Dynamic Navigation in
Multiple View Software Specification and Design," The Journal of Systems and
Engineering, Vol 41, 1998, pp. 93-103.

[Pappalarado 01] D. Pappalarado "Start-Ups Aim to Manage Web Services," Network
World, Vol. 10, No. 40, 2001, pp. 1-2.

[Rojak 96] S. Rojak, “Domains in Logical Data Modeling,” DBMS Online, 1996.
Available: http://www.dbmsmag.com/9603d14.html.

[Seacord03] R. Seacord, K. Nwosu, “Life Cycle Activity Areas for Component-Based
Software Engineering Process,” Carnegie Mellon University and Lucent
Technology, Inc. 2003. Available:
http://www.sei.cmu.edu/cbs/tools99/lifecycle/index. html.

[Shaw96] M. Shaw, D. Garlan, Software Architecture: Perspective on an Emerging
Discipline, Upper Saddle River, New Jersey, Printice-Hall, 1996.

[Shin02] E. Shin, "Evolution in Multiple-View Models of Software Product Families,"
PhD Dissertation, George Mason University, 2002.

[Sodhi99] J. Sodhi, P. Sodhi, Software Reuse: Domain Analysis and Design Process,
McGraw-Hill, New York, 1999.

[Sugumaran92] V. Sugumaran, H. Gomaa, and L. Kerschberg, "Generating Target
System Specifications from a Domain Model Using Clips," Clips Conference
Proceedings, Houston TX, Vol. 1, 1992, pp. 209-26.

[Parnas79] Parnas D., "Designing Software for Ease of Extension and Contraction,"
IEEE Transactions on Software Engineering, March 1979.

[Rumbaugh99] J. Rumbaugh, G. Booch, 1. Jacobson, The Unified Modeling
Language Reference Manual, Addison Wesley, Reading MA, 1999.

[Vizard 01] M. Vizard, "Reuse Grail Is in Sight with Web Services," InfoWorld, Vol. 23,
No. 38, 2001, p. 8.

210

[Weiss99] D M Weiss and C T R Lai, Software Product-Line Engineering: A
Family-Based Software Development Process, Addison Wesley, 1999.

[Zhang 03] H. Zhang, S. Jarzabek, "An XVCL-Based Approach to Software Product Line
Development," Int. Conf. on Software Engineering and Knowledge Engineering,
2003.

http://www.tcpdf.org

‘e o* inghiall)l

4 DARALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Software Product Line Engineering Based on Web Services 1Ulgusll
Saleh, Mazen M. Aquil rosain | alioll

Gomaa, Hassan(Super.) to>] aslio

2005 HENVWNFTRT]

bia>)9 uS19,49 ‘8990

618453 :MD 3,

duzol> Jilw, ESYEINIFTY

English :aelll

ol,9:8> allw, ragodell as)all

George Mason University asol=l

Volgenau School of Engineering raudsUl

a,S5,0V daxiodl WLVl radgall

Dissertations 1Wlogleoll aclgd

Olowll awiis (wlogleoll audi oYl «Oliseo)l :&aolgo
https://search.mandumah.com/Record/618453 ol

‘ ‘ abgiaxo Beaxl grox anghaiall 1> 2019 ©
Aoz 3kl 030 dclb of Juams cliSey abgamo sl F9i> geox 0l lale (il Foi> ol go gdsall Byl (e el d>lio bsloll 0in
s ol sl B> wlol o wnbi> aupai s (s SVl ayl gl oVl gdlgo Jin) aluaws oSl puc il ol ool ol il gaoug s ol

ol Lalu Zyl_ﬂbl

.aoglaioll

www.manharaa.com

https://search.mandumah.com/Record/618453

211

Appendix A: Radio Frequency Management System: A Case
Study

A.1 Introduction

The radio frequency spectrum is used for a very wide variety of wireless
communications. It is considered a valuable resource that needs to be managed
efficiently. The Radio Frequency Management system (RFMS) is built to manage the
distribution of frequencies and to discover frequency interferences and illegal
transmissions. The RFMS is a software product line that serves different types of
monitoring stations: main monitoring center (MMC), regional monitoring stations
(RMS), and mobile monitoring stations (MMS). The RFMS is the second case study for
software product lines based on web services that is used to validate this research. In this
case study, a RFMS product line is to be created for different types of monitoring
stations, which can be customized to the needs of individual stations. The RFMS case
study applies the software design approach and the three development environments that

are introduced in this research to create the SPL application.

The Radio Frequency Management System includes licensing of radio frequencies,
advance interference calculations, and monitoring radio frequency transmissions to

ensure compliance with national assignments and regulations. The system comprises of a

212

main monitoring center and many regional monitoring stations scattered around the
country. The software operates locally at each station with remote operation facilities
from the MMC to all other stations. The software for local operations is also available in
the mobile monitoring stations, which support the activities of the fixed MMC and RMS

stations.

A.2 Validation of This Research

The Radio Frequency Management System case study validates:
a) Multiple-view design architecture for SPL applications based on web services.
b) The three development approaches:
e Dynamic Client Application Customization (DCAC).
e Dynamic Client Application Customization with Separation of
Concerns (DCAC-SC).
e Static Client Application Customization (SCAC).

c) The proof-of-concept development environment prototype SPLET.

A.3 Multiple-view Design Architecture

This section describes the softiware product line modeling approach for the RFMS

product lines based on Web Services.

213

A.3.1 Use Case Modeling

Figure A-1 depicts the Use Case diagram for the RFMS SPL, which captures the overall
software requirements. The Use Cases are categorized as kernel, optional, or alternative

as given by the PLUS method [Gomaa04].

The actors for this use case model are the users of the product line, providing inputs to a
product line member system and receiving outputs from it.
e Monitoring technician — Performs actions pertaining to frequency occupancy

monitoring, remote monitoring, and occupancy evaluation.

e Monitoring engineer — Performs actions pertaining to frequency analysis,

frequency allocation, and interference measurement.

e Data entry clerk — Performs actions pertaining to data entry of frequency

allocation.

Briefly, the use cases are:

e Radio Frequency Occupancy: Monitoring technician can monitor the spectrum
for radio frequency occupancy for a period of time. All transmissions within the
given range are detected and stored for analysis.

¢ Frequency Occupancy Evaluation: The result of the frequency occupancy is

compared to the frequency management database for illegal transmissions.

214

<<kemel>> <<include>> <<optional>>
Radio Frequency -—- Frequency Occupancy
Occupanc Evaluation
Monitoring
technician

<<pptional>>

<<pptional>>
Remote Monitoring

<<afternative>>
Central Interconnection

<<alternative>>
Regional Interconnection

<<glternative>>
Mobile interconnection

<<pptional>>
Information retrieval

Monftoring —<<pptional>>
- o> X
= Data Entry Clerk
<
= S E—u-'l'df’_'f' \ <<goptional>>
N Cosite Analysis
-
N %
\%‘
e

<optional>>
B Intermodutation
Analysis

Figure A-1 Use case model

Remote Monitoring: Monitoring technician in the main monitoring station uses
the regional monitoring stations to perform remote frequency occupancy tasks.

Central Interconnection: Monitoring technician can perform automatic setting
of monitoring equipments and their related antennas for the main monitoring

center.

215

Regional Interconnection: Monitoring technician can perform automatic setting
of monitoring equipments and their related antennas for the regional monitoring
stations.

Mobile Interconnection: Monitoring technician can perform automatic setting of
monitoring equipments and their related antennas for the mobile monitoring
stations.

Information Retrieval: Monitoring engineer can retrieve technical information
on allocated frequencies and retrieve administrative information regarding
licensed users.

Frequency allocation entry: Data entry clerk enters preliminary frequency data
to be analyzed by the frequency engineer.

Frequency allocation analysis: Monitoring engineer apply Electro Magnetic
Compatibility (EMC) analysis on the proposed frequency request and take action
whether to allocate the frequency, or reject it. The EMC analysis is based on
arithmetic calculations of a proposed frequency against the already allocated
frequencies in the frequency management database to avoid interference between
assigned frequencies.

Cosite Analysis: The Frequency allocation analysis may include interference
analysis for frequencies that transmit from the same location.

Intermodulation Analysis: The Frequency allocation analysis may include
interference analysis for frequencies that may cause interference when they are

modulated with other frequencies in the same coverage area.

216

e Interference measurement: The monitoring engineer process an interference
complaint by coordinating with the monitoring technician to monitor the spectrum
for all transmissions within a given range, and then perform interference
measurement tests on suspicious frequencies. Interferences are usually caused by
illegal transmissions, malfunction of transmitters causing frequency deviation, or
signal level increase.

¢ Frequency Direction finding: Monitoring technician uses the mobile monitoring
station to locate the source of a transmitter. Finding the direction of a transmission

is part of the interference measurement tests.

A.3.2 Feature Modeling

A feature dependency model is derived from the use case model. Product line features are
categorized as kernel, optional, or alternative features. Table A-1 shows the feature / use

case dependencies based on the PLUS environment [Gomaa04].

| Use Case y
Feature Use Case Category / Variation
Feature Name Category | Name Variation Point Name
Point (VP)
MMC Alternative | Central Alternative
Interconnection Interconnection
RMS Alternative | Regional Alternative
Interconnection Interconnection
MMS Alternative | Mobile Alternative
Interconnection Interconnection

Table A-1 Feature / Use Case Dependencies

217

Use Case
Feature Use Case Category / Variation

Foaturs:Nime Category | Name Vaﬁftig: Point Name

Point (VP)
Frequency Kernel Radio Frequency Kernel-VP Equipment &
Occupancy Occupancy Antenna types
Remote Optional Remote Monitoring | Optional-VP | Equipment &
Occupancy Antenna types
Occupancy Optional Frequency Optional
Evaluation Occupancy

Evaluation

Interference Kernel Interference Kernel-VP Equipment &
MeasuremntCalc Measurement Antenna types
Information Optional | Information Optional
Retrieval Retrieval
Frequency Optional Frequency Optional
Allocation Allocation Entry
EMC Frequency | Optional Frequency Optional
Analysis Allocation Analysis
Co-Site Analysis | Optional Cosite Analysis Optional
Inter-Modulation | Optional Intermodulation Optional
Analysis Analysis
Direction Optional Frequency Optional
Finding Direction Finding

Table A-1 Feature / Use Case Dependencies (Continue)

218

The feature model in figure A-2 depicts the features of the SPL application.

Figure A-2 SPL feature model

The SPL feature model is used as the main driver for customizing the SPL application.
This model is entered in the SPLET tool to create the feature navigation tree. The feature
model is used in SPLET to organize all SPL engineering components into their related
features. The Feature Selector component in SPLET is used to select optional and

alternative features from the feature tree when customizing target applications.

219

A.3.3 User interface Interaction Modeling

Since this design method is based on a service-oriented architecture for product lines, it is
important to show the navigation between user interface screens. The navigation model is
depicted from the feature model. Table A-2 shows the feature / class dependencies in the

navigation model.

Feature Class Class
Feature Name Category Class Name Category Pefamotis
Main Kernel MainUI Kernel-VP | Title: String
Customizer Kernel
MMC Alternative | MMCconnect Alternative
Interconnection
RMS Alternative | RMSconnect Alternative
Interconnection
MMS Alternative | MMSconnect Alternative
Interconnection
Frequency Kernel FreqOccupancy Kernel-VP | StationName:
Occupancy String
Customizer Kernel
Remote Optional | RemoteOccupancy Optional- | StationName:
Occupancy VP String
Customizer Kernel
Occupancy Optional OccupancyEvaluation Optional
Evaluation
Interference Kernel InterferenceMeasurement | Optional
MeasuremntCalc
Customizer Kernel
Information Optional InfoRetrieval Optional
Retrieval FrequencyRetrieval Optional
UserRetrieval Optional
Frequency Optional | FrequencyAlloc Optional
Allocation Acceptance Optional
EMC Frequency | Optional | EMCAnalysis Optional
Analysis

Table A-2 Feature / Class Dependencies

220

Feature Class Class
Feature Name Category Class Name Category | Parameter
Co-Site Analysis | Optional | EMCAnalysis Optional
Inter-Modulation | Optional | EMCAnalysis Optional
Analysis
Direction Optional | DirectionFind Optional- | StationName:
Finding VP String

Customizer Kernel

Table A-2 Feature / Class Dependencies (Continue)

Figure A-3 is a user interface interaction model. It shows the navigation between user

interfaces. Each user interface screen is supported by a user interface object, which is in

turn associated with one or more Web services. Each user interface object contains a GUI

and a customizable workflow for members of the software product line. The GUI will be

responsible for accepting user input and user requests to initiate events that are translated

into method calls to web services. After receiving the user input, the user interface object

interacts with the appropriate Web service.

Figure A-3 User interface interaction model

221

A.3.4 Detailed Design

A.3.4.1 Main user interface

Figure A-4 shows a sample GUI for the “MainUI” user interface class. Figure A-5 shows
a customizable activity diagram for the “MainUI” user interface. This diagram shows
“MMCconnect”, “RMSconnect”, and “MMSconnect” wuser interfaces for
equipment/antenna connection setup as mutually exclusive alternatives where only one of
them can be invoked by clicking the Equipment Setup button of “MainUI” user interface
(Figure A-4). “Frerccupancy” and “InterferenceMeasurment” are kernel user interfaces.
The diagram also shows the optional user interfaces: “InfoRetrieval”, “FrequencyAlloc”,

and “DirectionFind”.

Figure A4 User interface - MainUI

222

Activity modeling

Figure A-5 shows all possible activities occurring at the “MainUI” user interface,
including optional and alternative activities. Feature conditions are used to define
optional and alternative paths to the customizable workflow. The Equipment Setup button
of Figure A-4 is used to invoke one of the following alternative user interfaces based on
the customization process of target application: “MMCconnect”, “RMSconnect”, or
“MMSconnect” user interfaces. “FreqOccupancy”, “InfoRetrieval”, “DirectionFind” and
“FrequencyAlloc” are optional user interfaces. The buttons related to the invocation of
these optional user interfaces are either enabled or disabled based on feature selection

during the customization process of target applications.

[Foature = MMC interconnection [Fieahure = MMS Interconnection
AND Equipment setup selectod] AND Equipment setup salectad)

[Feature = Interconnection
mﬁﬁ‘p“

<<alt iy <<alemaf

<user interface>> user interface=> <<user interface>>
Invoke Invoke Invoke

MMCconnect Ul RMSconnect Ul MMSconnect Ul

Figure A-5 Activity diagram - MainUI user interface

223

Interaction Modeling

Figure A-6 shows the customization phase of the “MainUI” user interface for the
Dynamic Customization of Client Application (DCAC) and the Dynamic Customization
of Client Application with Separation of Concerns (DCAC-SC) approaches, in which
customization is done at run time by reading the selected features and parameterized

variables from the customizer object.

) o 2:Request feature selection &
1: Start Wﬁiﬂﬂmn - parameterized variables o
<<kernel>> <<gntity>>
<<user interface>> _>E :Customizer
:MainUl 3: Selected features
and parameters e

Figure A-6 Customization Phase - MainUI user interface

224

Figure A-7 shows the object interaction of “MainUI” user interface. Object interaction is

based on the activity model, shown in figure A-5, and the description for that model.

Figure A-7 Interaction Modeling - MainUT user interface

A.3.4.2 Equipment/Antenna Setup

The Radio Frequency Management System is created to support three different types of
monitoring stations: Main Monitoring Center (MMC), Regional Monitoring Station
(RMS), and Mobile Monitoring Station (MMS). Each station type contains different
equipment and antenna setup. Therefore, three alternative user interfaces are developed to
support the automatic setting of monitoring equipments and their related antennas of each
station type. Figure A-8 shows the alternative “MMCconnect” user interface used at the

Main Monitoring Center.

225

Figure A-8 Equipement/Antenna setup for MMC

Activity Modeling

Figure A-9 shows the activity diagram for “MMCconnect” user interface. It shows two
possible web service invocations. The first invocation is for reading the current
equipment/antenna interconnection setup for the Main Monitoring Center and the second

invocation is for setting the new interconnection changes to the equipment/antenna setup.

Read seftings selected

Apply new setlings
selected

MMCconnect()

MMCconnect()

Emm_m] {mm}

Figure A-9 Activity Diagram — MMCconnect Ul

Interaction Modeling

226

Figure A-10 shows the object interaction for “MMCconnect” user interface of the Main

Monitoring Center. The user interface has two functions:

read the current

equipment/antenna interconnection and set the new interconnection setup for the Main

Monitoring Center.

1: Request interconnection readings

2:Request interconnection

— jirs readings for the MMC << variant>>
s rin‘ rb:‘ _} ; <<web m
:MMCconpnect 3: Setup readings

1: Request interconnection setting 2:Set interconnection
——) for the MMC <<variant>>
<<variant>> >

s bt H . mm
:MMCconnect €

3: New setup readings

Figure A-10 Collaboration Diagram - MMCconnect Ul

227

The regional and mobile monitoring stations have different equipment/antenna types and
setup. Therefore, reading the equipment/antenna setup and setting the connection
between the equipment and antennas require different user interfaces and web service
methods to accomplish the above tasks. The different readings and settings of
equipment/antenna web service methods are grouped in the InterconnectionWS web
service, as shown in Figure A-11. Web service methods are depicted from the activity

model of each user interface.

<<variant>>
<<web service>>
InterconnectionWs

ReadMMCconnect()
ReadRMSconnect()
ReadMMSconnect()
SetMMCconnect()
SetRMSconnect()
SetMMSconnect()
RotateD130()
RotateHL023()

Figure A-11 InterconnectionWS

Figure A-12 shows the alternative “RMSconnect” user interface. It is used to perform
automatic setting of monitoring equipments and their related antennas at the Regional

Monitoring Stations (RMS).

228

Figure A-12 Equipment/Antenna Setup - RMS

Activity Modeling

Figure A-13 shows the activity diagram for “RMSconnect” user interface. It shows two
possible web service invocations. The first invocation is for reading the current
equipment/antenna interconnection setup for the Regional Monitoring Station and the
second invocation is for setting the new interconnection changes to the

equipment/antenna setup.

229

Call Call
InterconnectionWS.Read InterconnectionWs.Set
RMSconnect() RMSconnect()

Figure A-13 Activity Diagram — RMSconnect Ul

Interaction Modeling
Figure A-14 shows the object interaction for “RMSconnect” user interface. The user
interface has two functions: read the current equipment/antenna interconnection and set

the new interconnection setup for the Regional Monitoring Station.

1: Request interconnection readings 2Request i cti
—_— readings for the RMS << variant>>
<<vafiant>> —_— <<web service>>
<<user z :InterconnectionWs
B ‘RMSconnect 3: Setup readings
1: Request interconnection setting 2:Set interconnection
e 2 forthe RMS <<vadant>>
<< interta ‘_)s Intorconnectons
RMSconnect
3. New setup readings

Figure A-14 Collaboration Diagram - RMSconnect Ul

Figure A-15 shows the alternative “MMSconnect” user interface. It is used to perform
automatic setting of monitoring equipments and their related antennas at the Mobile

Monitoring Stations (MMS).

230

Activity Modeling

Figure A-16 shows the activity diagram for “MMSconnect” user interface. It shows two
possible web service invocations. The first invocation is for reading the current
equipment/antenna interconnection setup for the Mobile Monitoring Station and the
second invocation is for setting the new interconnection changes to the

equipment/antenna setup.

Call
InterconnectionWWS.Read

MMSconnect()

Figure A-16 Activity Diagram — MMSconnect UI

Interaction Modeling

Call

Interconnection\WsS.Set

MMSconnect()

231

Figure A-17 shows the object interaction for “MMSconnect” user interface. The user

interface has two functions: read the current equipment/antenna interconnection and set

the new interconnection setup for the Mobile Monitoring Station.

1: Request interconnection readings
—>

2:Request interconnection

| e =
S intole dnterconnectionWs
:MMSconnect 3 Setumdiﬂgs
1: Request interconnection setting 2:Set interconnection
=2 <<vanant>> for the_>MMS &mb
<<user ‘InterconnectionWs
:MMSconnect —

Figure A-17 Collaboration Diagram - MMS

3: New setup readings

232

A.3.4.3 Interference Measurement

The Interference Measurement user interface is used to process interference complaints
by performing interference measurement tests on suspicious frequencies. Interferences
are usually caused by illegal transmissions, malfunction of transmitters causing frequency
deviation, or signal level increase. Figure A-18 shows the Interference Measurement user

interface.

-y Mdutation

Figure A-18 Interference Measurement Ul

233

Activity Modeling

The “InterferenceMeasurement” user interface is used to perform frequency interference
calculations and run equipment calibration tests. The calculations are: frequency
deviation, signal level, and frequency modulation. The equipment calibration function is
used to test if measuring equipments used in the calculation tests are calibrated or need
maintenance service. Also, this user interface allows users to rotate the appropriate

antennas before running the measurement tests.

Figure A-19 shows the activity diagram for “InterferenceMeasurement” user interface.

Eﬂl‘ts&ml Iwel\ [Sumreqmucy
test modulation test
Call Interference Cail Interference
Sure
chird OR
[Foature=h

Figure A-19 Activity Diagram — InterferenceMeasurement Ul

234

The above activity model shows the frequency deviation test is conducted using one of
the following equipments: HP8587A spectrum analyzer, HP8588B spectrum analyzer, or
ESMS500 receiver. The feature conditions show that the spectrum analyzer HP8587A is
associated with the MMC Interconnection and RMS Interconnection features. The
spectrum analyzer HP858BA is associated with the MMC Interconnection and MMS

Interconnection features. The ESM500 receiver is used by all type of stations.

The antenna rotation in the activity model shows two types of antennas: D130 and
HLO023. The feature conditions show that the D130 antenna is associated with the MMC
Interconnection and RMS Interconnection features, while the D130 is associated with
only the MMS Interconnection feature. Based on feature selection, the appropriate

antenna is used in the antenna rotation activity.

Interaction Modeling
Figure A-20 shows the customization of the “InterferenceMeasurement” user interface
for the DCAC and the DCAC-SC approaches, in which customization is done at run time

by reading the selected features and parameterized variables from the customizer object.

1: Sta P 2:Request feature selection &
A o parameterized variables womm——
<<kemnel>> e
<<user interface>> > . er 't“i"’_
:Interference] — _ :Customizer
IR 3: Return information
Measurement

Figure A-20 Customization Phase — InterferenceMeasurement Ul

235

Figure A-21 shows the collaboration diagrams for the “InterferenceMeasurement” user
interface. The collaboration diagrams are based on the activity model of Figure A-19.
They show the object interaction for the following activities: run deviation test, run
modulation test, run signal level test, run calibration test, and rotate antenna. Also, web

service objects are depicted from the activity model.

2A: Run Freq. deviation test

with HP8567A analyzer
2B: Run Freq. deviation test
with HP8567B analyzer
1: Initiate frequency deviation test
using the spectrum analyzer 2C: Run Freq. deviation test
4 wilh ESM500 receiver < N
<<yser Hu‘h;e» — , ‘“1* service>>
Anterference Interference MeasurementWs
Measurement —
3: Freq. deviation result
1: Request modulation test 2: Run modulation test
—_ <<kemel>>
T —_—
Anterference [3
Measurement 3: Return modulation
result
1: Request signal level test 2: Run signal level test
—_— < M::\wnﬁ»
Anterference —
Measurement 3: Retum signal level
result
2 Run equipment
1: Request calibration test calibration test 2 2
<cumr Sy <<web service>>
ntederence < CalibrationWs
Measurement 3: Retumn Calibration
result
2A: Rotate HLO23 antenna
1: Request antenna rotation 2B: Rotate D130 antenna
<<komel=>
<<yser interfaces> —_— ‘W
nterference InterconnectioWs
Measurement «— ‘RotateHL023()
3: confirmation

Figure A-21 Collaboration Diagram — Frequency Deviation

236

A.3.5 Web Services Modeling

From the activity modeling, all possible service requests are identified. These services are
organized and grouped into related web services based on their objects interaction,

described in section 3.4. Figure A-22 shows a sample grouping of methods into Web

Services.
<<variant>> <<variant>> <<pptional>> <<optional>>
<<web service>> <<web service>> <<web service>> <<web service>>
InterconnectionWs OccupancyWs EMCanalysiswS RetrievalWs
ReadMMCconnect() OccHP255A() CoSite() UserRetrieval()
ReadRMSconnect() OccHP255B() Frequency() FrequencyRetrieval()
ReadMMSconnect() OccEvaluation() Intermodulation()
SetMMCconnect() RemoteOcc()
SetRMSconnect()
SetMMSconnect()
RotateD130()
RotateHL023()
<<optional>> <<kernel>> <<kemel>> <<optional>>
<<web service>> <<web service>> <<web service>> <<web service>>
FregAllocWS CalibrationWs InterferenceMeasurmentWs DirectionFindingWs
FregEntry() EQcalibration() DevHP8567A() FindFreqDir()
UserEntry() DevHP8568B()
Acceptance() DevESMS500()
ModESMS00()
SigESMS00()

Figure A-22 Web Service Modeling

237

A.4. SPL development

This section applies the three development approaches for software product line based on
web services to the Radio Frequency Management System (RFMS) case study. The
“MainUI” user interface is used as an example for the development of each approach.
This user interface object is customized to derive target applications using the SPLET
tool. Figure A-23 shows the same activity diagram for the “MainUI” user interface
described in section 3.4. The activity diagram is used to show all possible feature
variation for derived applications. The feature guards are used in the development of the
product line to apply customization decisions either during run time or during source

code integration.

[Feahsre = MMC Interconnection [Feature = MMS Interconnection
AND Equipment setup ssiacted] AND Equipment selup selectsd]

[Featurs = RMS interconnection
AND Equipmengt selup selocted)
|

< <user interf <<user interf <user interface>>
Invoke Invoke Invoke
MMCconnect Ul RMSconnect Ul MMSconnect Ul

Figure A-23 Activity diagram - MainUI user interface

238

A.4.1 Dynamic Customization of Client Application (DCAC) approach

This section applies the DCAC approach to the RFMS case study, where target
applications are dynamically customized at run time. Figure A-24 shows a sample
implementation for the “MainUI” user interface. The source code sample shows how

alternative and optional features are treated in the source code.

Public class MainUl
{
public MainUI)
{
‘Customizer Cst = new Customizer() ; :’tﬂkww&mmmr
bool mmcCon, rmsCon, mmsCon, dirFind, freqAliog, infoRet ; ?ublic Customizer()
mmcCon = Cst featureSel (MMC tion) ;
rmsCon = Cst feature Selection(RMSI tion) |
mmsCon = Cst featureSelection{MMSint
dirFind = Cstfeamreﬁeleunn(i}lmcumﬂng)
fregAlloc = Cst featureSe))i
infoRet = Cst.fe S (tionR: m“

// Display ALL GUI components

; [pubfic featureSelection()
MalnTite Text = c-.va:smqmmurrm}zl B i
(dirFing == ") Reg, 11b= read feature selection (Y/N) from FeatureTable WHERE
{ % 1! feature = featureName
#f Create Direction finding button ”%%
bDirFinding_button.visible = true; I enable OPTIONAL button) retum b
}
¥ (freqAlioc == Y") B
S "
#f Create Frequency Allocation button Public string L)
bFreqAlioc_button.visibie = true; 1l enable OPTIONAL button t i
me: o) 1l var = read varVaiue from variables Table

I/ WHERE varName = VariableName
Create Information Retrieval button .
bRetieval_button.visible = true; If enable OPTIONAL button ; Tetum var |

I

}
private void bSetup_button_click()
{

if (mmcCon == "Y")

1f diptay MMCconnect Ul
eise if{rmsCon == "Y")

1/ disptay RMSconnect Ul

i
else immsCon == "Y") W
1l display MMSconnect Ul h
}

private void bDirFinding_button_click()

If clicked, Invoke MMC tul |

It display Direction Finding Ul

{maro void bFreqAlioc_button_click()
If disptay Frequency Allocation Ul

Livate void bRetrieval_button_click()

! 1 display Information Retrieval Ui

Figure A-24 DCAC Implementation - MainUI user interface

239

The “MainUI” user interface is customized by reading the feature selection and the value
of parameterized variables from the customizer object to enable or disable buttons and set
appropriate display variables. Its workflow is customized by setting features to true or
false and applies settings to feature conditions on which user interface to call or which

web service to invoke. The following section explains the customization in more detail.

A.4.1.1 Customization of client application at run time:

¢ Object MainUI is customized by reading the feature selections stored in the
customizer object and stores them in local variables, where they will be used
throughout the MainUI object. Local feature variables mmcCon, rmsCon,
mmsCon, dirFind, freqAlloc, and infoRet store the MMC Interconnection, RMS
Interconnection, MMS Interconnection, Direction Finding, Frequency Allocation,
and Information Retrieval feature decisions respectively and are set to “Y” or

“N”, depending on whether the feature is selected or not.

e During the customiiation process, optional button “Direction Finding” is created
if dirFind is equal to “Y” and ignored otherwise.
if (dirFind == “Y")

// Create Direction Finding button
bDirFinding bution.visible = true;

240

e During the customization process, optional button “Frequency Allocation” is

created if freqAlloc is equal to “Y” and ignored otherwise.

if (freqAlloc == “Y”)
// Create Frequency Allocation button
bFreqAlloc button.visible = true;

e During the customization process, optional button “Information Retrieval” is

created if infoRet is equal to “Y” and ignored otherwise.

if (infoRet == “Y”)
// Create Information Retrieval button
bRetrieval button.visible = true;

e During the customization process, the parameterized variable MainUITitle is read
from the customizer object to set the appropriate header title of the “MainUI”
user interface.

MainTitle.Text = Cst.varSelection(MainUlITitle);

241

A.4.1.2 User interface object interaction:

After the dynamic customization process is complete, the “MainUI” user interface is

ready to accept user input.

e If Equipment Setup button is invoked, “MMCconnect” Ul, “RMSconnect” UL or
“MMSconnect” Ul will be called, depending on whether MMC Interconnection,
RMS Interconnection, or MMS Interconnection feature is selected.

if (mmcCon == “Y”)

// diplay MMCconnect Ul
else if(rmsCon == “Y”)

// display RMSconnect Ul
else if(mmsCon == “Y”)

// display MMSconnect Ul

e If Direction Finding button is enabled and invoked, “DirectionFind” UI will be

called.
private void blockRes button_click()
{
// display BlockReservation Ul
}

e If Frequency Allocation button is enabled and invoked, “FrequencyAlloc” Ul

will be called.

private void bFreqAlloc_button click()
i

}

// display FrequencyAlloc UI

242

e If Information Retrieval button is enabled and invoked, “InfoRetrieval” UI will

be called.
private void bRetrieval _button click()

{
// display InfoRetrieval Ul

A.4.2 Dynamic Customization of Client Application with Separation of
Concerns (DCAC-SC) approach

This section applies the DCAC-SC approach to the RFMS case study to include
separation of concerns, which is not addressed in the DCAC approach. Figure A-25
shows a sample implementation for the “MainUI” user interface. The source code sample
shows the separation of concerns between kernel source code and variable source code.
The separated source code is then integrated with kernel source code during the code
weaving process using the proof-of-concept SPLET environment. The result of the
weaving process is the combined source code for the entire software product line
including all optional and alternative source code. The code weaving process and
compilation are performed only once to generate an executable SPL system containing all
kernel and variable source code. Target systems will rely on the dynamic client
application customization at system run time, the source code of which is identical to that

produced by the first approach (DCAC).

243

The proof-of-concept prototype environment SPLET is used for separation of concerns
and the integration of variable source code with kernel source code. Variable source code
is created using the Variable Source Code Editor component of SPLET, described in
Chapter 6 in section 6.2.3.1. The integration process is based on the dynamic method in

the Code Weaver component of SPLET, described in Chapter 6 in section 6.2.3.3.

Kemet source code
Public dass MainUl
{

?wumn

G izer Cst = pew C

bool mmeCon, rmsCon, mmsCon, difFind, freqAlloq, infoRet ;

mmeCon = Cst H
msCon = Cst f MS fion) ;
mmsCon = Cst (MMSH

dirFind = Cst featureSelection(DirectionFinding) ;
freqhlloc = Cst &

infoRet = Cst i
H Display ALL GUI components

MainTitle. Text = Cs. varSebaction(MainlJ

Figure A-25 DCAC-SC Implementation - Main Reservation Ul

244

Based on the DCAC-SC approach, all optional and alternative feature source code in the
variable source code file is integrated with the kernel source code at the location of the
insertion point, using the dynamic method of integration in the Code Weaver component.
For example, the insertion point 8S7TART dirFindButton refers to the optional feature
“DirectionFinding” in the variable source code file. The variable source code will be
inserted in the kernel “MainUT” user interface class at the place of the insertion point:
8START diFindButton. At run time, this button will be either visible or invisible based on
feature selection. The SPL application is customized at run time using a customization
file that is produced by the Feature Selector, Consistency Checker, and Customization

File Generator components of SPLET.

Public class MainUl

public MainUi()
{

Customizer Cst = new Customizer() ;

bool mmeCon, rmsCon, mmsCon, dirFind, fregAliog, infoRet

mmcCon = Cst featureSelection(MMClnterconnection) ;
msCon = Cst featureSelection(RMSIinterconnection) ;
mmsCon = Cst featureSelection(MMSInterconnection) ;
dirFind = Cst featureSelection(DirectionFinding) ;
fregAlloc = Cst. jon(FrequencyAllocation) ;
infoRet = Cst featureSelection(InformationRetrieval) ;

/ Display ALL GUI components

MainTitle. Text = Cs.varSelection{MainUITitle) ;

I $START dirFindButton
if (dirFind == “Y”)

{

Il Create Direction finding button

bDirFinding_button.visible = true; 1/ enable OPTIONAL button
}

!/ $START freqAllocButton
rtfmqﬂloc—"Y"l

Il Create Frequency Allocation button
bFreqAlloc_button.visible = true; I/ enable OPTIONAL button
}

/f $START infoRetButton
if (inforRet == “Y™)

N Create Information Retrieval button
bRetieval_button.visible = frue; // enable OPTIONAL button

H
private void bSetup_button_ciick()

{
11 $START setupCon
if (mmcCon == “Y™)
1! diplay MMCconnect Ul
else if{rmsCon == “Y™)
!l display RMSconnect Ul
else ifimmsCon == “Y")
I display MMSconnect Ul

}

private void bDirFinding_button_click()
Il $START DirFindUl
DirectionFind

df= DirectionFind{) ;
df.Show() ; new !

i void bFregAlloc_button_click()
I} $START fregAliocUl
Fi : fa = new FregAlloc() ;
fvate void bRetrieval_button_click()

1/ $START infoRetUl
mﬂ ir = new InfoRetrieval() ;

Variable source code inserted of
$START dirFindButton

insertion point where DirectionFinding
feature is selected

A

Variable source code inserted of
$START fregAllocButton

insertion point where
FrequencyAllocation feature is selected

Variable source code inserted of
$START infoRetButton

insertion point where
InformationRetrieval feature is selected

Variable source code inserted of
$START DirFindUl

insertion point where Direction Finnding
feat selected

b
4

A

|

I

$START
insertion point where
FrequencyAllocation feature is selected

Variable source code inserted of
fregAllocUl

Variable source code inserted of
$START infoRetUl

insertion point where
InformationRetrieval feature is selected

Figure A-26 Integrated Source Code - MainUI

245

246

Figure A-26 shows the “MainUI” user interface class after the integration process using
the Code Weaver component. Inserted blocks are:
e Insertion point $START dirFindButton in the kernel source code is replaced
with the following source code from the variable source code file:

// $START dirFindButton

if (dirFind == “¥”)
{

// Create Direction finding button
bDirFinding button.visible = true; //enable OPTIONAL button

e Insertion point $START freqAllocButton in the kernel source code is replaced

with the following source code from the variable source code file:

// 8START freqAllocButton
if (freqAlloc == “Y”)
{

// Create Frequency Allocation button
bFreqAlloc button.visible = true; // enable OPTIONAL button

Y,
e Insertion point $START infoRetButton in the kernel source code is replaced
with the following source code from the variable source code file:

// $START infoRetButton
if (infoRet == “Y”)
{

// Create Information Retrieval button
bRetieval button.visible = true; // enable OPTIONAL button
/
e Insertion point $START setupCon in the kernel source code is replaced with

the following source code from the variable source code file:

247

// 8START setuCon
if (mmcCon == “Y”)

// diplay MMCconnect Ul
else if(rmsCon == “Y”)

// display RMSconnect Ul
else if(mmsCon == “Y”)

// display MMSconnect Ul

Insertion point $START DirFindUI in the kernel source code is replaced with
the following source code from the variable source code file:

// 8START DirFindUI
DirectionFind df = new DirectionFind() ;
Df.show() ;

Insertion point $START freqAllocUI in the kernel source code is replaced
with the following source code from the variable source code file:
// 8START freqAllocUI

FreqAlloc fa = new FreqAlloc() ;
Ja.show() ;

Insertion point $START infoRetUI in the kernel source code is replaced with

the following source code from the variable source code file:

// 88TART infoRetUI
InfoRetrieval ir = new InfoRetrieval() ;
ir.show() ;

248

A .4.3 Static Customization of Client Application (SCAC) approach

This section applies the SCAC approach to the RFMS case study. In this approach, only
source code related to selected features is integrated with kernel source code. Figure A-27
shows a sample implementation for the “MainUI” user interface. The source code sample
shows both the kernel source code and optional and alternative source code in the
variable source code file. Insertion points are the key for integrating kernel source code
and variable source code. If an optional or an alternative feature is selected, its related
source code from the variable source code file is inserted in the target application at the

location of the insertion point.

The proof-of-concept prototype environment SPLET is used to create the separation of
concerns and the integration of variable source code with kernel source code. Variable
source code is created using the Variable Source Code Editor component of SPLET,
described in Chapter 6 in section 6.2.3.1. The integration process is based on the static
method in the Code Weaver component of SPLET, described in Chapter 6 in section

6.2.3.3.

249

Kemel source code
Public ciass MainUi

{
?ﬂlﬂlﬂn

Cst = new

bool mmcCon, rmsCon, mmsCon, dirfind, freqAllog, infoRet ;

TSN
L Ezg;;

|
VAVAY.
hi Ewiﬂi u,igig

Figure A-27 SCAC Implementation - Main Reservation Ul

Based on the SCAC approach, only selected optional and alternative source code from
the variable source code file is integrated with the kernel source code at the location of
the insertion point using the static method of integration in the Code Weaver component.

For example, the insertion point 8START infoRetButton refers to the optional feature

250

“InformationRetrieval” in the variable source code file. Only if this feature is selected
using the Feature Selector component will the variable source code be inserted in the

kernel “MainUI” user interface class at the place of the insertion point:

S$STARTinfoRetButton.

Kernel source code

Public class MainUl
{

public MainUi()
{

‘Customizer Cst = new Customizer() ;

bool mmeCon, rmsCon, mmsCon, dirFind, fregAlloq, infoRet ;

/Il Display ALL GUI components

1/ $START MainUltitle P

MainTitle.Text = “Regional Monitoring Station” ;
/I $SSTART dirFindButton // No code insertion
/I $START freqAllocButton // No code insertion

I/ $START infoRetButton =

Variable source code inserted of
$START MainUltitle

insertion point where
RMSinterconnection feature is selected

i Create Information Retrieval button
bRetieval_button.visible = true; il enable OPTIONAL button

}
private void bSetup_button_click()
{
$START setupCon
RMSconnect rms = new RMSconnect()

Variable source code inserted of
$START infoRetButton

insertion point where
informationRetrieval feature is selected

rms.show() ;
}
private void bDirFinding_button_click()

// $START DirFindUI /I No code insertion

}
private void bFreqAlloc_button_click()
{
/ $START freqAliocUl #/ No code insertion
}
private void bRetrieval_button_click()

{
$START infoRetUI 7]

Variable source code inserted of
$START setupCon

insertion point where
RMSinterconnection feature is selected

InfoRetrieval ir = new InfoRetrieval() ;
ir.Show() ;
4

Variable source code inserted of
$START infoRetUl

insertion point where
InformationRetrieval feature is selected

Figure A-28 Integrated Source Code - MainUI

251

Figure A-28 shows the “MainUI” user interface class after the integration process. In this
example, the optional feature “InformationRetrieval” and the alternative feature “RMS
Interconnection” are selected. The source code related to these feature is inserted in the
kernel source code. The other features are not selected. Hence, their related source code
is ignored during the integration process using the Code Weaver component. Inserted

blocks are:

e Insertion point SSTART MainUltitle in the kernel source code is replaced by
the following source code from the variable source code file:

// 8START MainUltitle
MainTitle. Text = “Regional Monitoring Station” ;

e Insertion point $START InfoRetButton in the kernel source code is replaced
by the following source code from the variable source code file:
// 8START InfoRetButton
// Createlinformation Retrieval Button
bRetrieval button.visible = true ;

¢ Insertion point SSTART setupCon in the kernel source code is replaced by the

following source code from the variable source code file:

// 8§TART setupCon
RMSconnect rms = new RMSconnect();
Rms.Show() ;

e Insertion point $START infoRetUI in the kernel source code is replaced by
the following code from the variable source code file:

// 8START infoRetUI
InfoRetrieval ir = new InfoRetrieval();
ir.Show() ;

252

A.4.4 Summary

The Radio Frequency Management Systems is the second case study used to validate this
research. This case study first modeled the multiple-views of the RFMS product line. Use
case model, feature model, navigation model, GUISs, activity diagrams, and collaboration
diagrams were used to design the RFMS product line. The design was then translated into
implementation source code based on each of the three development approaches that are
introduced in this research: Dynamic Client application Customization (DCAC),
Dynamic Client application Customization with Separation of Concerns (DCAC-SC), and
Static Client Application Customization (SCAC). The implementation source code of the
three development approaches was customized to generate target applications from the

product line.

253

Appendix B: Development Environment Patterns

B.1 Introduction

This chapter lists the patterns used in the three software development environments,
described in sections 5.2, 5.4, and 5.5, to support the automatic customization of SPL
architecture and components:

B2. Dynamic Client Application Customization (DCAC)

B3. Dynamic Client Application Customization with separation of concerns (DCAC-

SC)

B4. Static Client Application Customization with separation of concerns (SCAC)

254

B.2 Dynamic Client Application Customization Pattern

Dynamic Client Application Customization Pattern
Intent
Provide a consistent reusable solution to the implementation architecture of a
client/server software product line using web services with provision for dynamic
client application customization.

Motivation

The goal of developing software product lines is to promote flexible software
reuse. With the introduction of web services to SPLs, there is a need for
developing a systematic approach that enables developers to implement a
customizable system that can be dynamically customized into many single target
systems without the need to modify any of the source code. Using the feature
selector component, user interfaces and workflows of SPL systems can be
automatically adjusted at run time to serve a single target system.

Solution
The idea behind the (DCAC) pattern is the development of dynamic client
application that can be customized at system run time.

The DCAC Pattern has two main steps:
3. SPL Customization
4. Target application interaction

Step 1: SPL Customization

This step involves selecting desired optional and alternative features to be
included in the target system. The feature selector component provides a facility
to make feature selection from a SPL model and run consistency checks to verify
selections. Once features are selected, selection information will be stored in the
customization file by the customization file generator. The dynamic client
application is customized by reading the customization file at run time.

255

(DCAC pattern — Continue)

Components description:

Feature selector: Allows users to selects desired features, and allows entry
for parameterized variable values.

Consistency checker: Verifies feature selection.

Customization file generator: Generates a customization file for each
target system.

SPL model database: Contains feature tree, feature relations, analysis
model, design model, components, and parameterized variables.
Customization file: Contains feature name, feature selection status
(true/false) and values of parameterized variables.

Dynamics
The following scenario depicts the customization process of a target system:

Application engineer selects desired features for a target system using
feature selector component.

Consistency checker is invoked to verify selection by consulting the SPL
model.

Generate a customization file, which will be used by the client application
for dynamic customization at run time.

Appicat Consistency Customization file T
mm:ﬂ Feature selector dhadie generator SPL model Q.sto';:‘?hm
- l Invoke
Selecttargetsystem | [~ ™ Verify -
features and enter
values of [terized |_
variables
Invake __r‘l _ [—
A'r ‘ '-L,_l customization file L

256

(DCAC pattern — Continue)

Eeatine editor 1 Invokem 1 Consistency 1Verify .-1
1 checker SPL model

1

Customization file | CGenerates- —==
generator 1..»| Customization

Step 2: Target application interaction
The Dynamic Client Application Customization (DCAC) Pattern divides an
interactive application into three components:

e Customizer component

e User interface component

e Web Service component

Customizer component contains all customization information for a single target
system. At run time, the customizer object reads the customization file and stores
all customization information in the customizer object’s local storage (arrays, data
table, etc.) to be used for customizing the client application user interfaces and
their workflows. Customization information consists of enabled or disabled
features and parameterized variables.

User interface component is responsible for accepting input from users and
allowing invocation of possible service requests. It involves the sequencing of
web services invocation and handling of message communication based on the
customizable workflow. It is also responsible for displaying results to users
coming from the web service component.

Web Service component is a collection of functional methods that are packaged as
a single unit and published in the Internet, Intranet, or Extranet in a private or
public UDDI for use by other software programs, in this case the user interface
component.

257

(DCAC pattern — Continue)

Class Collaboration Class Collaboration
Customizer Web service .
Responsibility - Customization | | pegponsibility - User interface
- Reads customization information | file - Process a service request based on
from the customization file / provided input
database - Returns results of processed
requests
Class Collaboration
User interface
e - Customizer
Responsiesty - Web service

- Calls customizer class to:

- Enable or disable user interface
components based on selected
features

- Customize user interface

- Customize workflow by setting up
appropriate method calls and
calls to other user interfaces
based on selected features

- Invoke and pass parameters to
appropriate web service(s)

- Receives results from web
service(s)

- Display information to the user

258

(DCAC pattern — Continue)

Dynamics

Once the target application features are selected in the SPL customization step, the
application will be ready for execution. The application interaction step describes
the two processes that occur at execution time: dynamic customization and object
interactions.

Step 2-1: Shows how the client application is dynamically customized at run time.
e Starts main client application program.
Customizer object is invoked at main client application program startup.
e Customizer object reads customization information once from the
customization file that is generated by the customization file generator.
e Customization information can be read by all user interface objects

through the customizer object.
Main client _ e
] [(==
start Fi
ey Irvoke 1
> Request cusomization info
- Provide customization info
(Feature names,
Features selection status,
T Features Variables)
Main client Invoke p-]
application Program | 1 ;| Customizer

Feature selector &
Customization file
generator

259

(DCAC pattern — Continue)

Step 2-2: Shows how user interface objects interact with service requests using
the DCAC pattern:

Customization of user interface at run time
e User invokes a user interface.
¢ User interface requests customization information from customizer object.
e User interface reads the customization information to:
- Customize user interface components

- Defining appropriate calls to web services based on selected
features.

- Define appropriate calls to other user interface objects.
- Update parameterized variables.

Customization is based on feature selection information stored in the
customization file.

User interface and web service interaction
e User requests an activity by entering input data and clicking a button.
e User interface object passes the activity request and input data to a web
service method(s).
* Web service processes the request and passes the results to the user

interface object. A web service may also request services from other web
services.

o User interface object displays results received from web service.

260

(DCAC pattern — Continue)

User Interface | Customizer [Web Service] \
Customization of user)
interface at run time L
—_— q -
Start/Create customization info
o Customization info
Customize user interface and
1: workfiow,
Update parameterized variables,
[.
User interface and web
service interaction l
e
Kokt Request Service]
Process
I:E event
Call other
- web
sarvices
Service response L..
[]T_J Display result
S e
‘ Customizer |
1
A
1 Read customization info
1 Invoke

F User interface

!

Call other Ul

A

Update

Web service

i

Invoke other web service

261

B.3 Dynamic Client Application Customization with Separation
of Concerns Pattern

Dynamic Client Application Customization with Separation of Concerns Pattern

Intent

Provide a consistent reusable solution to the implementation architecture of a
software product line using web services with provision for dynamic client
application customization and separation concerns.

Motivation
This pattern is an extension to the DCAC pattern, which does not address the issue
of separation of concerns. This issue needs to be introduced for the purpose of

reducing complexity of developing SPL applications, maintenance, and system
evolution.

Solution

The idea behind the (DCAC-SC) pattern is the development of dynamic client
application that can be customized at system run time by separation of concerns
between kernel source code and optional and alternative source code.

The DCAC-SC Pattern has four main steps:
5. Separation of concerns between kernel and variable source code
6. Code weaving
7. SPL Customization (the same as the DCAC pattern)
8. Target application interaction (the same as the DCAC pattern)

The above steps have to be performed in sequence. First, separation of concerns
and code weaving have to be performed. The SPL application can then be
customized by selecting desired features. Target applications are compiled to
produce an executable SPL application.

262

(DCAC-SC pattern — Continue)

Step 1: Separation of concerns between kernel and variable source code:

This step involves separating kernel source code from optional and alternative
source code into a variable source code file where separated source code is
grouped by features. Optional and alternative source code is identified by unique
insertion point names in the variable source code file. Insertion points have to be
also included in the kernel source code to specify the location where optional and
alternative source code will be inserted.

Dynamics
The following scenario depicts the dynamic behavior of separation of concerns:
e Create application classes with kernel source code.
e Create a variable source code file that contains source code related to
alternative and optional features.
® Add insertion points to kernel source code where optional and alternative
source code from the variable source code file will be inserted.

263

(DCAC-SC pattern — Continue)

Kemel Source Code Variable source code file
rdammuuo SFEATURE[A] // Optional Feature
F $START insl
, /’///, // Code
$START insl #| SEND insl
- y SSTART ins2
; //////’ // Code
$END ins2
$START ins2////// FENDEEATURE [A]

SFEATUREINTERACTION[X,Y]

o $START ins3

$START ins3 — | if (Feature-X == true) // Alternative Feature
// Code

else if{Féature—Y == true)// Alternative Feature
// Code

$END ins3

$ENDFEATURE INTERACTION[X,Y]

Language description:
e Kernel source code
- $START <<insertion name>>: Specifies insertion location in
kernel source code

e Variable source code file
- $START <<insertion name>>: Identifies optional or alternative

source code that needs to be inserted at the location specified in the
kernel source code.

- $END <<insertion name>>: Specifies the end of insertion code.

264

(DCAC-SC pattern — Continue)

FEATURE [<<feature name>>]: Groups optional and alternative
source code in a feature block. Feature blocks are integrated with
kernel source code during the code weaving process based on
insertion names.

FEATUREINTERACTION[<<feature 1, feature 2, ...>>]: Groups
related features source code that requires decisions on which
source code to execute at run time. If-then-else statement is used
within the insertion name of the feature interaction block with
feature identifiers in the decision statement to be integrated as-is in
the kernel source code based on the language used to develop the
SPL application. At run time, only one of the decisions will be
executed based on feature selection during SPL customization.

ENDFEATUREINTERACTION []: Specifies the end of feature
interaction code.

Step 2: Code weaving

This step combines kernel source code with optional and alternative source code
from the variable source code file. This process is based on the Code Weaver
component, which reads the variable source code file and inserts all source code
blocks from that file into the kernel source code at the specified insertion

locations.

Dynamics

The following scenario depicts the dynamic behavior of code weaving process:

e Run the code weaver component.

e Read optional and alternative source code from the variable source code
file and integrate it into kernel classes at the specified insertion point
locations.

e Compile integrated source code to generate an executable dynamic SPL
application.

265

Kernel source code

(DCAC-SC pattern — Continue)

Variable source code

Class A

Class B

SPL client
application
source code

Compiler

Variable

code file

Executable
code

266

The following diagram shows the complete process of separation of concerns and

source code integration:

(DCAC-SC pattern — Continue)

Create Kemel code in classes

-

Add Insertion points where all
code from the feature file willbe [-------
inserted

Create a variable source code ke

file that contains code related o
alternative and optional features

Read variable source code file
and integrate all source code
into kernel classes at the
I_spec'rlied insertion locations

Compile the integrated source ks
code to generate an executable
dynamic SPL system

Y
I
..................... [Weave code

?

Develop client
application classes

code file

Run executable SPL
application

Kemel
source

variable
source
code file

Kernel

source
code

Integrated
source
code

Executable

267

(DCAC-SC pattern — Continue)

Step 3: SPL Customization

This step is identical to the SPL customization step in the DCAC pattern. It
involves selecting desired optional and alternative features to be included in the
target application. The feature selector component provides a facility to make
feature selection from a SPL model and run consistency checks to verify
selections. Once features are selected, selection information will be stored in the
customization file using the customization file generator. The dynamic client
application is customized by reading the generated customization file at run time.
This step is described in full in step 1 of the DCAC pattern.

Step 4: Target application interaction

This step is identical to the target application interaction step in the DCAC
pattern. This step follows the SPL customization step. Once the target application
features are selected, the application will be ready for execution. This step
describes how the client application is customized dynamically at run time, and
how user interface objects interact with service requests. This step is described in
full in step 2 of the DCAC pattern.

268

B.4 Static Client Application Customization Pattern

Static Client Application Customization Pattern
Intent
Provide a consistent reusable solution to the implementation architecture of a
software product line using web services with provision for static customization of
client application using the concept of separation of concerns.

Motivation

The goal of developing software product lines is to promote flexible software reuse.
With the introduction of web services to SPLs, there is a need for developing a
systematic approach that enables developers to implement a customizable overall
system that can be customized into many single target systems using a systematic
method for extracting the required source code for each target system.

Solution -

The idea behind the Static Client Application Customization (SCAC) pattern is the
separation of concerns between kernel source code and optional and alternative
source code for the purpose of extracting only required source code for running a
target system.

The SCAC Pattern has four main processes:

Separation of concerns between kernel and variable source code
SPL Customization

Code weaving

Target system interaction

e A

The above steps have to be performed in sequence. Variable source code has to be
separated from kernel source code in the separation of concerns step. The SPL
customization has to be performed next to select the target application features
before integrating variable source code with kernel source code in the code
weaving step. The customization file generated in the SPL customization step is
required in the integration process. Target applications are compiled to produce an
executable target application.

269

(SCAC Pattern — Continue)

Step 1: Separation of concerns between kernel and variable source code

This step involves separating kernel source code from optional and alternative
source code into a variable source code file where separated source code is grouped
by features. This step is similar to the separation of concerns step in the DCAC-SC
pattern, but differs in the construction of the variable source code file to include
necessary decisions when more than one feature is involved within an insertion
point name. These decisions enable the code weaver engine to integrate only
selected variable source code rather than integrating all variable source code as
done in the DCAC-SC.

Dynamics
The following scenario depicts the dynamic behavior of Separation of concerns:
Create application classes with kernel source code.
Create a variable source code file that contains source code related to
alternative and optional features.
e Add necessary decisions within insertion point names for insertions that
involve more than one feature (feature interaction).
e Add insertion points to kernel source code where optional and alternative
source code from the variable source code file will be inserted, based on
feature selection.

270

(SCAC Pattern — Continue)

Kernel Source Code Variable source code File

Class.......{) SFEATURE [A] // Optional Feature

$START insl /

$START ins2 /

$START insl
// Insertion code
SEND insl

$START ins2
// Insertion code
SEND ins2

SENDFEATURE [A]

SFEATURE [X] // Alternative Feature
S8START ins3

// Insertion code

$END ins3
SENDFEATURE [X]

$START ins3 SFEATURE [Y] // Alternmative Feature

[N\ N\ N

$START ins3

// Insertion code
S$END ins3

SENDFEATURE [Y]
$START ins4
\ $FEATUREINTERACTION([C,D]

}

/

§START ins4
$1IF FEATURE[C,D] //Both features selected
// Insertion code

SELSEIF FEATURE[C] //0n1y feature C selected
// Insertion code

SELSEIF FEATURE[D] //Only feature D selected
// Insertion code

SENDIF
SEND ins4

SENDFEATUREINTERACTION[C,D]

271

(SCAC Pattern — Continue)

Language description:
e Kernel source code
- $START <<insertion name>>; Used to specify insertion location in
kernel source code

e Variable source code file
- $START <<insertion name>>: Used to identify optional or
alternative source code that needs to be inserted at the location
specified in the kernel source code.

- $END <<insertion name>>: Specifies the end of insertion source
code.

- FEATURE [<<feature name>>]: Groups optional or alternative
source code in a feature block. Feature blocks are integrated with
kernel source code during the code weaving step based on insertion
names.

- FEATUREINTERACTION[<<feature 1, feature 2, ...>>]: Groups
related feature source code that requires decision on which source
code is to be included in the code weaving step.

- $IF FEATURE [<<feature 1>>, <<feature 2>>, ..]. A programmatic
decision point within the FEATUREINTERACTION block that is
used to notify the code weaver engine whether to include the
following source code block or not based on selected features in the
customization file.

- $ELSEIF FEATURE [<<feature name>>]: A programmatic ELSEIF
point to be used in case the IF FEATURE statement is false.

- SENDIF: Specifies the end of the decision statements.

- ENDFEATUREINTERACTION []: Specifies the end of feature
interaction source code.

272

(SCAC Pattern — Continue)

Step 2: SPL Customization

This step is identical to the SPL customization step in the DCAC and DCAC-SC
patterns. However, this step has to be performed before integrating variable source
code with kernel source code in the code weaving step. It involves selecting desired
optional and alternative features to be included in the target application. The feature
selector component provides a facility to make feature selection from the feature
model and run consistency checks to verify feature selections. Once features are
selected, selection information will be stored in the customization file by the
customization file generator. The code weaver component reads this file to
integrate selected feature source code with kernel source code.

Step 3: Code weaving

This process combines kernel source code with optional and alternative source code
from the created variable source code file and the customization file. This step is
based on a source code integration engine, which reads the variable source code file
code and inserts only selected source code that is related to selected features into
the kernel source code at the specified insertion locations. This means, if an
optional feature is selected, its related source code in the variable source code file
will be inserted in the target system, and if one or the other alternative feature is
selected, only related source code of the selected alternative feature is inserted in
the target system at the location of the insertion point. Feature grouping and
insertion points are the key for separation of concerns and source code integration.

273

(SCAC Pattern — Continue)

Dynamics
The following scenario depicts the dynamic behavior of code weaving step:
¢ Run the code weaver component.

e Read selected optional and alternative source code from the variable source
code file and integrate it into kernel classes at the specified insertion point
locations. The generated customization file is used for making decisions on
which feature source code to insert.

e Compile integrated source code to generate an executable target system
with only the required target system source code.

Kemel source code Variable source code

l I | I

Class A Class B Class C

Compiler Executable

274

The following diagram shows the complete processes of separation of concerns,

feature selection, and code weaving:

Create Kemel source code in D}
classes

Add Insertion points where
source code from the variable
source code file will be inserted
based on feature selection

(SCAC Pattern — Continue)

Create a variable source code
file that contains source code

features

related to alternative and optional

|58

Select target system features
and run consistency checks

[

Read selected features and
integrate related source code

classes

from the feature file into kemnel

[

target system

Compile the integrated source
code to generate an executable

application classes

Create client

classes
Create variable source
code file

Compile

Run Executable target
application

Variable
source
code file

Integrated

275

(SCAC Pattern — Continue)

Step 4: Target application interaction
Once the interactive application is integrated and compiled, it will have the
following components structure:

e User interface component

e Web service component

User interface component is responsible for accepting input from users and
allowing invocation of possible service requests. It involves the sequencing of web
services invocation and handling of message communication based on the
customized workflow. It is also responsible for displaying results to users received
from the web service component.

Web Service component is a collection of functional methods that are packaged as a
single unit and published in the Internet for use by other software programs, in this
case the user interface component.

Class Collaboration Class Collaboration
Web service User interface
Responsibility ~ |- User interface Responsibility - Web service
- Process a service request based on - Accepts user input and service
provided input request
- Retums results of processed - Invoke and pass parameters to
request appropriate web service(s)
- Receives results from web
service(s)
- Display information to the user

276

(SCAC Pattern — Continue)

Dynamics

The following scenario shows how service requests are processed using SCAC:

User invokes a user interface

User requests a service by entering input data and clicking a button

User interface passes the service request and input data to a web service

method(s).

e Web service processes request and returns results to the user interface. A

web service may also request service from other web services.
e User interface displays results received from web service.

Web Service l

User Input Request Service

Il

Y

|

Service response

Imvoke

E”ms

Call other

User Interface - }

Call other Ul

| Web Service

A

|

Invoke other web service

277

CURRICLUM VITAE

Mazen Saleh was born on June 13, 1968, in Makkah, Saudi Arabia. In 1990 he received
his B.Sc. in Computer Science from Texas Southern University at Houston, Texas. He
obtained a Master of Science in Computer Information Systems from American

University at Washington, DC, in 2000. He joined a doctoral program at George Mason
University in Fall 2001.

From 1991 to 1999, Mr. Saleh worked for the Ministry of Telecommunications in Saudi
Arabia. He started as a systems analyst and was promoted to director of the Information
Technology department of the Radio Frequency Division in 1995.

http://www.tcpdf.org

‘e o* inghiall)l

4 DARALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Software Product Line Engineering Based on Web Services 1Ulgusll
Saleh, Mazen M. Aquil rosan | alioll

Gomaa, Hassan(Super.) to> aslio

2005 HENVWN PR

a9 uS19,49 ‘8990

618453 :MD »3,

duzol> Jilw, ESYEINIFTY

English :aelll

ol,9:8> allw, ragodell as,all

George Mason University asol=l

Volgenau School of Engineering raudsUl

a,S5,0V daxiodl WLVl radgall

Dissertations 1Wlogleall aclgd

Olowll awiis (wlogleoll audi oYl «Oliseo)l :aolgo
https://search.mandumah.com/Record/618453 ol

‘ ‘ abbgaxe Soaxl gao> .doghaioll ,l> 2019 ©
Pl 3lall 03 el of Juos cliSay absgaxo il Sgi> gaox Of lale il Bgi> wlol go gdsall Syl (sle <l aslio 3Ll 0in
s ol sl Bgis Lol oo s gurai Ugs (iSO 2yl of iVl @8lso Jio) dleas S| yue il ol Jigmll ol ol gious (osd (sl

ol Lalu Zyl_ﬂbl

.aoglaioll

www.manharaa.com

https://search.mandumah.com/Record/618453

Software Product Line Engineering Based on Web Services

A dissertation submitted in partial fulfillment of the requirements for the Degree of
Doctoral of Philosophy at George Mason University.

By

Mazen M. Aquil Saleh

Bachelor of Science, Texas Southern University, 1990
Master of Science, American University, 2000

Director: Dr. Hassan Gomaa
Professor, Information and Software Systems Engineering

Spring Semester 2005
George Mason University
Fairfax, Virginia

http://www.tcpdf.org

